Instead of 2 waves, add more and more and the groups become wave localized

\[\Delta x \rightarrow \Delta x \rightarrow \text{flat} \]

in a limit

\[\text{flat} \rightarrow \text{localized} \rightarrow \text{WAVE PACKET} \]

the "flat" regions \(\Rightarrow \) a phase relationship \(y = \pi \)
among all waves in the packet

\[
y = 2A \cos \left\{ \frac{\Delta k x - \Delta \omega t}{2} \right\} \cos \left\{ \frac{\hbar x - \hbar \omega t}{\hbar} \right\}
\]

the envelope

\[\Downarrow \]

going flat at particular \(x \)'s

\[\Delta x = x_2 - x_1 \text{ here are zero} \]

and \(\frac{\Delta k x_2}{\Delta \omega} - \frac{\Delta k x_1}{\Delta \omega} = \pi \) for more points.
\[\frac{\Delta h}{2} (x_2 - x_1) = \pi \]
\[\Delta h \Delta k = 2\pi \]

Likewise in TIME
\[\Delta \omega \Delta t = 2\pi \]

So... to have fine localization
\[\Delta x \text{ small} \]
\[\Delta h \text{ large} \]

must have large range of wavelengths.

\[\text{since } \Delta x = \frac{2\pi}{\Delta h} \]

In electronics
\[\Delta t = \frac{2\pi}{\Delta \omega} \]

Sine pulse requires high frequency bandwidth.

\[\Rightarrow \text{ all true in all kinds of waves.} \]
2 waves-one twice the other cos(x) and cos(11\sqrt{2}\times x)

\[\cos(x) + \cos(11\sqrt{2}\times x) + \cos(11\times x) \]
For many waves superimposed

\[y(x,t) = \sum_{n} A_n \cos(h_n x - \omega_n t) \]

Fourier Series

which can be extrapolated to a continuous distribution

\[y(x,t) = \int_{0}^{\infty} \tilde{y}(h) \cos(h x - \omega t) \, dh \]

In this case, we can again deal with an envelope.

For example

\[y(x,0) = A e^{-\Delta h^2 x^2} \cos(h_0 x) \]

traveling waves

Gaussian envelope

real localization
SO... you want "pauticles"?

when all you've got are waves?

WAVE PACKETS are your thing!

For many, many waves together...:

\[v_q = \frac{\Delta w}{\Delta k} \rightarrow \frac{dw}{dk} \bigg|_{k_0} \]

\[v_q = \frac{dw}{dk} \bigg|_{k_0} \]

with \(w = h v_p \)

\[v_q = v_p \bigg|_{k_0} + h \frac{d v_p}{dk} \bigg|_{k_0} \]

\(v_p \) can be a function of a material \(\lambda \)

can be \(v_p(\lambda) \) or therefore \(v_p(k) \)

such as dispersive media - the individual waves travel at different speeds

\[\rightarrow v_q \]

\[\text{in time} \]

\[\text{The individual wave separating} \]
Figure 2. (a) & (b) Shockwave pulse train in a 106-m long length of CGW-B-10 fiber with nominally 90% reflecting mirrors across each end. Pulse spreading effects were made negligible by injecting 30-nsec wide laser pulses that were broad compared to the fiber dispersion. (b) Pulse 2014m, L = 954m, 514 Pulse 106m, L = 106m.
Back to particles... de Broglie particles.

+ couple of standard relations:

\[E = hf \]

\[E = \frac{\hbar \nu}{2\pi} = \frac{\hbar \omega}{2\pi} \]

\[E = \hbar \omega. \]

\[p = \frac{\hbar}{\lambda} = \frac{\hbar k}{2\pi} \]

\[p = \hbar k. \]

Look at phase velocity:

\[v_p = f\lambda = \frac{E}{p} \]

\[E = \sqrt{p^2c^2 + m^2c^4} \]

\[v_p = \sqrt{\frac{p^2c^2 + m^2c^4}{p^2}} = c \sqrt{1 + \left(\frac{mc^2}{p}\right)^2} \]

\[v_p = c \sqrt{1 + \left(\frac{mc^2}{\hbar k}\right)^2} \]

\[\uparrow \quad v_p = v_p(c) \quad \text{DISPERSE IN EMPTY SPACE} \]
Look at group velocity

\[v_{gr} = \frac{d\omega}{dn} = \frac{d}{dP} \left(\frac{E}{\hbar} \right) = \frac{dE}{dp} \]

\[E^2 = m^2 c^4 + p^2 c^2 \]
\[2E \, dE = 2p \, dp \, c^2 \]
\[\frac{dE}{dp} = \frac{pc^2}{E} \]

\[v_{gr} = \frac{pc^2}{E} \]

Not obvious — look non-relativistically, \(p = mu \).

And \(E = \frac{p^2}{2m} \)
\[\frac{dE}{dp} = \frac{2p}{2m} = \frac{mu}{m} = v \] the "mechanical" velocity

\[v_{gr} = \frac{dE}{dp} = v \]

Is the group velocity

Act H H A T! one can think of a "particle" with "mechanical" velocity \(v \) as a "wavepacket" with group velocity \(v_{gr} \)
WHAT DOES IT MEAN

to determine the location of something?

gotta "look" at it...

t not quiet with your eyes... but in principle

cut different.

But... suppose your probe and your target are

both particles and waves...

& suppose your target is tiny -- like an electron

& your probe is light.

This was thought about by Werner Heisenberg

--- formally --- derived from Quantum Mechanics

--- and abstractly --- using Thought Experiments
What is a Shadow?

- Light, small wavelength
- Big object
- or, a slit

If the slit is $a \lambda$:

- $a \sin \theta_0 = n \lambda$
- $\theta_0 = \frac{n \lambda}{a}$

- λ - smaller λ -- more localized to the image of the slit for $m=1$
KEEP THIS IN MIND!

What's the INTENSITY of light?

For any wave, its the square of the amplitude.

For light, $I \propto |E_{\text{rms}}|^2$

↑ the electric field
Here's the rub...

\[p_y = \frac{h}{\lambda} \]

(smaller the \(\lambda \), higher the \(p \))

So, how about the location of an electron?

How well can you determine that an electron is here relative to here.

... using light.
Heisenberg "thought experiment"

\[P_y = \frac{h}{\lambda} \]

the resolving power... the resolution... of a microscope.

\[\Delta x = \frac{\lambda}{\sin \alpha} \]

best resolution, smallest \(\lambda \)

can't see any smaller than this for a given \(\lambda \)

... classically, reduce \(\lambda \)

(Ignore the change of \(\theta \) by scattered \(X \))
The proton can scatter anywhere
... but may be seen if it enters the lens.

biggest $\Delta p_{y'x}$ is for

$\Delta p_{y'x} = 2 p_{y'x} \sin \alpha$

But, by momentum conservation, this also equals $\Delta P_{y'x} = 2 P_{y'x} \sin \alpha$

$= \frac{2 h \sin \alpha}{\lambda}$

smallest disturbance e -- largest λ

multiply:

$\Delta x \Delta P_{y'x} = \frac{\lambda}{\sin \alpha} \cdot \frac{2 h \sin \alpha}{\lambda}$

$\Delta x \Delta P_x = 2h$

This is an inescapable conclusion... since proton's wavelength cannot be arbitrarily reduced -- had to have at least 1% to "illuminate" the electron.
Just bad measuring?

No. It's due to the impossibility of using less than a single photon.

How about electrons?

- An electron single slit
- An electron double slit

- Single slit - same as for light.

\[\theta_s \sim \frac{\lambda}{a} \]
@ first minimum.
Double slit

\[a = \frac{\lambda}{d} \]

first one
then
the other

minima occur at

\[\sin \theta_d = \frac{\lambda}{d} \]

\[\theta_d \leq \theta_s \left(\frac{a}{2d} \right) \]

the interference minima much more frequent.
Okay... trick it.

Figure out which slits the electrons go through

The monitor emits photons which scatter from an electron... and into our eye

→ and identifies which slit.
TIGHTEN YOUR SEAT BELTS:

Remember, there is constructive interference for 2 slit diffraction at

\[d \sin \theta = m \lambda \quad m = 0, 1, 2, \ldots \]

Want the separation on the screen between adjacent maxima:

\[d \sin \theta_m = m \lambda \]

\[d \sin \theta_{m+1} = (m+1) \lambda \]

\[\sin \theta_{m+1} - \sin \theta_m = \frac{(m+1) \lambda - m \lambda}{d} \]

\[= \frac{\lambda}{d} \]

Any vertical spot on the screen is at

\[y_m = L \tan \theta_m \]

for small angles \(\tan \theta_m \approx \sin \theta_m \)

\[y_m \approx L \sin \theta_m \]
So,

\[y_{n+1} - y_n = L \sin \theta_{n+1} - L \sin \theta_n \]

\[= L (\sin \theta_{n+1} - \sin \theta_n) \]

\[y_{m+1} - y_m = \frac{L \lambda}{d} \]

Resolution - distinguishing
2 peaks - says
INTERFERENCE!!

Okay... remember the monitor?

Must distinguish one slit from the other

\[\Delta y \approx \frac{d}{2} \text{ or so...} \]
So... the monitor photon KICKS the electron

\[\Rightarrow \text{giving it some } \Delta p_y \]

Well, from our microscopic thought experiment...

\[\Delta y \Delta p_y \approx 2\hbar \]

\[\Delta p_y = \frac{2\hbar}{d/2} = 4\hbar/\bar{d} \]

\[\Delta \theta = \frac{\Delta p_y}{p} = \frac{4\hbar}{\bar{p} \bar{d}} \]

\[p = \frac{\hbar}{\lambda} \]

\[\Delta \theta = \frac{4\lambda}{\bar{d}} \]

so... the ADDED vertical displacement due to the monitor is

\[y = \Delta y \lambda = \frac{4\lambda \lambda}{\bar{d}} \]

The ORIGINAL distance between maxima was

\[y_{max} - y_{min} = \frac{7\lambda}{\bar{d}} \]