ELECTRIC FIELDS AND POTENTIALS FOR VARIOUS CHARGE CONFIGURATIONS

Charge Configuration	Magnitude of Electric Field	Electric Potential	Location of Zero Potential
Point charge	$\frac{q}{4\pi\epsilon_0 r^2}$	$\frac{q}{4\pi\epsilon_0 r}$	∞
Infinite line of uniform charge density λ	$\frac{\lambda}{2\pi\epsilon_0 r}$	$-\frac{\lambda}{2\pi\epsilon_0}\ln\frac{r}{a}$	r = a
Parallel, oppositely charged plates of uniform charge density σ , separation d	$\frac{\sigma}{\epsilon_0}$	$\Delta V = -Ed = -\frac{\sigma d}{\epsilon_0}$	Anywhere
Charged disk of radius <i>R</i> , along axis at distance <i>x</i>	$\frac{Q}{2\pi\epsilon_0} \left(\frac{\sqrt{R^2 + x^2} - x}{\sqrt{R^2 + x^2}} \right)$	$\frac{Q}{2\pi\epsilon_0 R^2} (\sqrt{R^2 + x^2} - x)$	∞
Charged spherical shell of radius R	$r \ge R: \frac{Q}{4\pi\epsilon_0 r^2}$	$r > R$: $\frac{Q}{4\pi\epsilon_0 r}$	∞
	r < R: 0	$r \le R: \frac{Q}{4\pi\epsilon_0 R}$	∞
Electric dipole	Along bisecting axis only, far away: $\frac{p}{4\pi\epsilon_0 r^3}$	Everywhere, far away: $\frac{p \cos \theta}{4\pi\epsilon_0 r^2}$	∞
Charged ring of radius R, along axis	$\frac{Qx}{4\pi\epsilon_0(R^2+x^2)^{3/2}}$	$\frac{Q}{4\pi\epsilon_0\sqrt{R^2+x^2}}$	∞
Uniformly charged nonconducting solid	$r \ge R: \frac{Q}{4\pi\epsilon_0 r^2}$	$r \ge R: \frac{Q}{4\pi\epsilon_0 r}$	∞
sphere of radius R	$r < R: \frac{Qr}{4\pi\epsilon_0 R^3}$	$r < R: \frac{Q}{8\pi\epsilon_0} \left(3 - \frac{r^2}{R^2} \right)$	∞