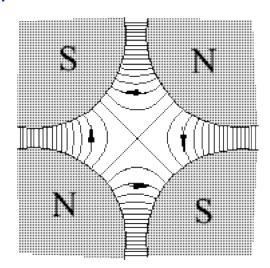
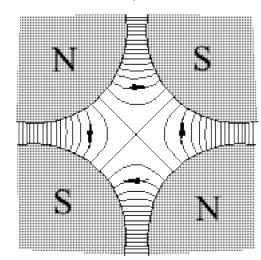

PHY481: Electromagnetism


Quadrupole doublet Vector Potential

The quadrupole doublet


The quadrupole doublet. Focuses (weakly) in both dimensions

left or right, focused top or bottom, defocused

left or right, defocused top or bottom, focused

left or right, closer inward top or bottom, further out

Field equations for B(x) & Vector potential A(x)

Always true

Constant currents only.

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$

$$\nabla \cdot (\nabla \times \mathbf{B}) = 0 = \mu_0 \nabla \cdot \mathbf{J}$$

$$\nabla \cdot \mathbf{J} = 0$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$

$$\oint_C \mathbf{B} \cdot d\ell = \mu_0 I_{encl}$$

$$\mathbf{B}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{x}') \times (\mathbf{x} - \mathbf{x}') d^3 x'}{|\mathbf{x} - \mathbf{x}'|^3} \qquad \frac{(\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} = -\nabla \frac{1}{|\mathbf{x} - \mathbf{x}'|}$$

$$\frac{(\mathbf{x} - \mathbf{x'})}{|\mathbf{x} - \mathbf{x'}|^3} = -\nabla \frac{1}{|\mathbf{x} - \mathbf{x'}|}$$

$$\mathbf{B}(\mathbf{x}) = \nabla \times \left[\frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{x}')d^3x'}{|\mathbf{x} - \mathbf{x}'|} \right]$$

$$\mathbf{B}(\mathbf{x}) = \nabla \times \left[\frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{x}')d^3x'}{|\mathbf{x} - \mathbf{x}'|} \right] \qquad \left(\nabla \frac{1}{|\mathbf{x} - \mathbf{x}'|} \right) \times \mathbf{J}(\mathbf{x}') = \nabla \times \left(\frac{\mathbf{J}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} \right)$$

$$\mathbf{B}(\mathbf{x}) = \nabla \times \mathbf{A}(\mathbf{x})$$

Fields from potentials

Vector potential:
$$\mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{x}')d^3x'}{|\mathbf{x} - \mathbf{x}'|}$$

$$\mathbf{E} = -\nabla V$$
$$\mathbf{B} = \nabla \times \mathbf{A}$$

Identity for previous slide

Prove
$$\left(\nabla \frac{1}{|\mathbf{x} - \mathbf{x'}|}\right) \times \mathbf{J}(\mathbf{x'}) = \nabla \times \left(\frac{\mathbf{J}(\mathbf{x'})}{|\mathbf{x} - \mathbf{x'}|}\right)$$

Let
$$f(\mathbf{x}) = \frac{1}{|\mathbf{x} - \mathbf{x'}|}$$

$$\left[\nabla f(\mathbf{x})\right]_j = \frac{\partial f(\mathbf{x})}{\partial x_j}$$

$$\begin{aligned} \left[\nabla f(\mathbf{x})\right] \times \mathbf{J}(\mathbf{x}') &= \varepsilon_{ijk} \left[\nabla f(\mathbf{x})\right]_{j} J_{k}(\mathbf{x}') \\ &= \varepsilon_{ijk} \frac{\partial f(\mathbf{x})}{\partial x_{j}} J_{k}(\mathbf{x}') = \varepsilon_{ijk} \frac{\partial}{\partial x_{j}} \left[f(\mathbf{x}) J_{k}(\mathbf{x}')\right] \\ &= \nabla \times \left[f(\mathbf{x}) \mathbf{J}(\mathbf{x}')\right] \end{aligned}$$

and

$$\mathbf{J}(x') \times [\nabla f(x)] = -\nabla \times [f(x) \mathbf{J}(x')]$$

Vector potential calculations

If currents are bounded (do not extend to infinity) get A by

Volume currents

$$\mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{x}')d^3x'}{|\mathbf{x} - \mathbf{x}'|}$$

Surface currents

$$\mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{K}(\mathbf{x}')d^2x'}{|\mathbf{x} - \mathbf{x}'|}$$

Line currents

$$\mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int \frac{Id\ell}{|\mathbf{x} - \mathbf{x}'|}$$

If currents extend to infinity get A via Stokes's theorem and B:

$$\oint_C \mathbf{A} \cdot d\ell = \int (\nabla \times \mathbf{A}) \cdot d\mathbf{a} = \int \mathbf{B} \cdot d\mathbf{a}$$

Direction of A can be tricky

Infinite current sheet

Magnetic field B is easy:

$$\oint \mathbf{B} \cdot d\ell = \mu_0 I_{encl}$$

$$2BL = \mu_0 KL$$

$$B = \mu_0 K / 2$$

$$\oint \mathbf{B} \cdot d\ell = \mu_0 I_{encl}$$

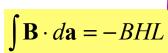
$$B = \mu_0 K / 2$$

$$\mathbf{B} = \mu_0 K / 2$$

$$\mathbf{B} = \frac{\mu_0 K}{2} \left\{ -\hat{\mathbf{j}} \quad z > 0 \\ +\hat{\mathbf{j}} \quad z < 0 \right\}$$

Vector potential A:

For currents of infinite extent


$$\oint_C \mathbf{A} \cdot d\ell = \int \mathbf{B} \cdot d\mathbf{a}$$

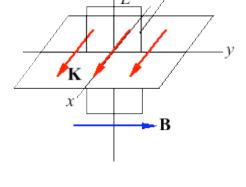
Assume
$$\mathbf{A}(x,z) = f(z)\hat{\mathbf{i}} + g(x)\hat{\mathbf{k}}$$

For bounded currents

$$\mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{x}')d^3x'}{|\mathbf{x} - \mathbf{x}'|}$$

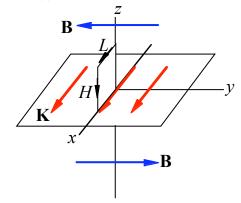
"Real" currents form loops

$$\oint_C \mathbf{A} \cdot d\ell = f(H) \int_0^L dx + g(L) \int_H^0 dz = Lf(H) - Hg(L) \int_H \mathbf{B} \cdot d\mathbf{a} = -BHL$$


Find functions f and g such that: Lf(H) - Hg(L) = -BHL

$$f(z) = -Bz/2; g(x) = Bx/2$$

$$\mathbf{A}(x,z) = \frac{B}{2} \left(-z\,\hat{\mathbf{i}} + x\,\hat{\mathbf{k}} \right)$$


$$f(z) = +Bz/2; g(x) = -Bx/2$$

$$\mathbf{A}(x,z) = \frac{B}{2} (+z\,\hat{\mathbf{i}} - x\,\hat{\mathbf{k}})$$

Amperian

Choose A.dl loop with normal in B direction

$$\mathbf{B} = \nabla \times \mathbf{A}$$
 Yes!

Assumption from previous slide

$$\mathbf{B} = \nabla \times \mathbf{A}$$

Assume

$$\mathbf{A}(x,z) = f(z)\,\hat{\mathbf{i}} + g(x)\,\hat{\mathbf{k}}$$

Magnetic field B is only in y direction

$$B_2 = \varepsilon_{231} \frac{\partial A_1}{\partial x_3} - \varepsilon_{231} \frac{\partial A_3}{\partial x_1}$$

Involves z dependence of A_x and, x dependence of A_z .

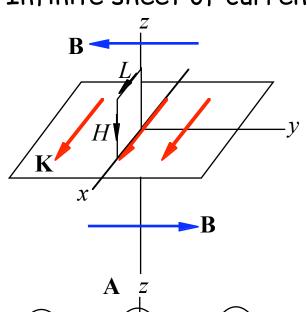
Visualizing the vector potential

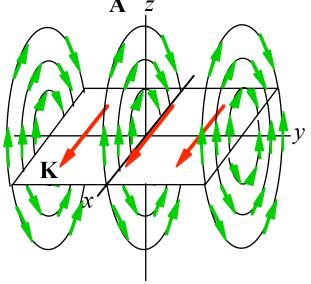
Magnetic field

$$\mathbf{B} = \frac{\mu_0 K}{2} \begin{cases} -\hat{\mathbf{j}} & z > 0 \\ +\hat{\mathbf{j}} & z < 0 \end{cases}$$

Changes sign above and below the sheet

Vector potential


$$\mathbf{A} = \mu_0 K \left(-z \,\hat{\mathbf{i}} + x \,\hat{\mathbf{k}} \right) / 4 \quad z > 0$$


$$\mathbf{A} = \mu_0 K \left(+z \,\hat{\mathbf{i}} - x \,\hat{\mathbf{k}} \right) / 4 \quad z < 0$$

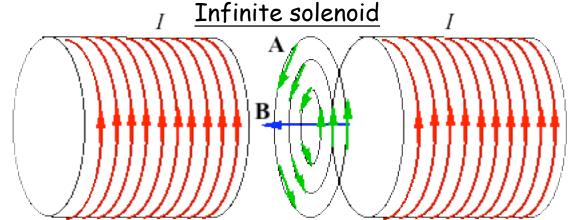
 A_z is discontinuous across the current sheet.

Why does **A** point opposite to **K** and curve this way?

Infinite sheet of current

Solenoid field and vector potential

Magnetic field

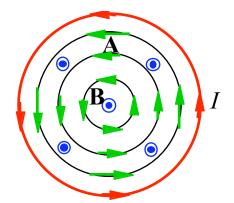

Ampere's law gives

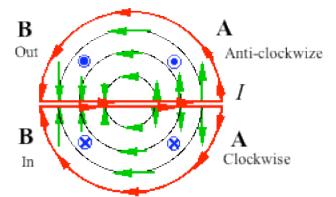
$$\mathbf{B} = -B\,\hat{\mathbf{j}} = -\mu_0 nI\,\hat{\mathbf{j}}$$

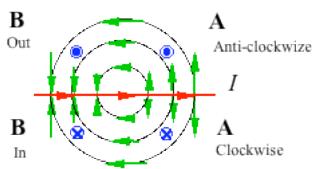
n = turns/unit length

Vector potential

$$\mathbf{A} = B(-z\,\hat{\mathbf{i}} + x\,\hat{\mathbf{k}})/2$$




Cut-away drawing showing the axial magnetic field B (uniform), and growing circular vector potential A.


Full solenoid

Two half solenoids

<u>Current sheet</u>

End views. Note: B and A directions and compare with a current sheet.