1. [3 pts] The location of a particle of mass M is given by

$$
\overrightarrow{\mathbf{r}}=C_{1} \cos (\omega t) \hat{\mathbf{i}}+C_{2} e^{B t} \hat{\mathbf{j}}+C_{3} t^{3} \hat{\mathbf{k}}
$$

as a function of the time t, where C_{1}, C_{2}, C_{3}, B, and ω are constants. Find the component of force in the tangential direction.
2. A mass M is attached to the ceiling by a massless string of length b. The mass is swinging back and forth, so θ is a function of time. Your answer to each question should contain some or all of the following: $\theta, \dot{\theta}, \ddot{\theta}$.
(a) [2 pts] Write down the kinetic energy.
(b) [2 pts] Write down the angular momentum about the point where the string is attached to the ceiling.
(c) [3 pts] Use the radial component of $\vec{F}=M \vec{a}$ to find the tension in the string.
(d) $[3 \mathrm{pts}]$ Use the tangential component of $\vec{F}=M \vec{a}$ to find the equation of motion which relates $\ddot{\theta}$ to θ.
3. [5 pts] Suppose that the friction force on an object of mass M travelling through a fluid is proportional to the cube of the velocity: $F=-K v^{3}$, where K is a constant. Find the velocity as a function of time, assuming that the initial velocity is v_{0} at time $t=0$. Neglect gravity.
4. A chain with length b and uniform mass density ρ is tightly coiled up on the floor. One end of the chain is lifted straight up at a rate such that the height of that end above the floor is given by $x=K t^{3}$, where K is a constant.
(a) $[4 \mathrm{pts}]$ Find the total force on the chain as a funtion of time t.
(b) [4 pts] Find the height of the center of mass of the entire chain as a function of time t.
(c) [4 pts] Find the work done by the hand as a function of time t.

