1. [5 pts] A particle of mass M moves in one dimension in the potential $V(x)=a+b x$ where a and b are constants. Find all possible motions $x(t)$.
2. [5 pts] The motion of a system with two degrees of freedom is described by the two coordinates x and y. The kinetic energy and potential energies are given by

$$
T=\frac{1}{2}\left[\dot{x}^{2}+\dot{x} \dot{y} \cos (x)+\left(1+t^{2}\right) \dot{y}^{2}\right] \quad V=x^{2}+t y^{2}
$$

Write the Lagrangian equations of motion. (But don't try to solve them - someone might get hurt!)
3. [5 pts] A point mass \mathbf{m} is located at a distance a from one end of a uniform wire of mass \mathbf{M} and length \mathbf{b} as shown. Find the gravitational potential energy of the mass. You may leave your answer in the form of a well-defined integral-you do not have to evaluate the integral.

4. [5 pts] A uniform disk of mass M and radius R is rotated about its diameter-like a coin spinning on its edge. Calculate the moment of inertia.
5. [5 pts] A satellite of small mass m is in a circular orbit of radius R about a planet of large mass M. At a certain instant of time, a powerful rocket motor on the satellite is fired briefly, so as to increase the velocity without changing its direction. As a result, the satellite goes into an elliptical orbit as shown. Find the new kinetic energy in terms of G, m, M, and R. Hint: $E=\frac{1}{2} m \dot{r}^{2}+\frac{\ell^{2}}{2 m r^{2}}-\frac{G m M}{r}$.

6. A uniform stick of length b and mass M hangs from the ceiling by a massless flexible string of length a. Use the coordinates θ_{1} and θ_{2}.

(a) [5 pts] Calculate the part of the kinetic energy due to the motion of the center of mass of the stick.
(b) [3 pts] Calculate the part of the kinetic energy due to the rotation of the stick about its center of mass. (Hint: The moment of inertia about the center of mass is $M b^{2} / 12$.)
(c) [3 pts] Calculate the gravitational potential energy.
7. [5 pts] The motion of a particle is given by $x=\cos (t)$ in units where $M=g=L=1$, where M is the mass, g is the acceleration due to gravity, and L has the dimensions of angular momentum. (You can get the dimensions of L from $\vec{L}=\vec{r} \times \vec{p}=M \vec{r} \times \vec{v}$.) Write $x(t)$ with the units M, g, L properly restored.
8. [5 pts] Write the most general solution to the equation $\ddot{x}+x=\sin (3 t)$.
9. [5 pts] The coordinates of a particle of mass M as a function of time are

$$
\begin{aligned}
x(t) & =e^{t}-1 \\
y(t) & =t^{2}+t
\end{aligned}
$$

Find the magnitude of the force.
10. [5 pts] The force on a particle of mass $M=1$ is equal to $p-1$, where p is the momentum. Find the position as a function of time (including any arbitrary constants that may be possible.)

Enjoy the summer and all that follows!

