Scott Pratt

Do not open exam until instructed to do so.

Scott Pratt - PHY 231 - Introductory Physics I - Spring

Quadratic Formula
$a x^{2}+b x+c=0$,
$x=\left[-b \pm \sqrt{b^{2}-4 a c}\right] /(2 a)$
Geometry
Circle: circumference $=2 \pi R$, area $=\pi R^{2}$
Sphere: area $=4 \pi R^{2}$, volume $=4 \pi R^{3} / 3$
Trigonometry

$$
\sin \alpha=\frac{A}{C}, \quad \cos \alpha=\frac{B}{C}
$$

$$
\tan \alpha=\frac{A}{B}
$$

$$
\begin{gathered}
\frac{\sin \alpha}{A}=\frac{\sin \beta}{B}=\frac{\sin \gamma}{C} \\
A^{2}+B^{2}-2 A B \cos \gamma=C^{2}
\end{gathered}
$$

Polar Coordinates
$x=r \cos \theta, \quad y=r \sin \theta$
$r=\sqrt{x^{2}+y^{2}}, \quad \tan \theta=y / x$
SI Units and Constants

quantity	unit	abbreviation
Mass m	kilograms	kg
Distance x	meters	m
Time t	seconds	s
Force F	Newtons	$\mathrm{N}=\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$
Energy E	Joules	$\mathrm{J}=\mathrm{N} \mathrm{m}$
Power P	Watts	$\mathrm{W}=\mathrm{J} / \mathrm{s}$
Temperature T	${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{K}$ or ${ }^{\circ} \mathrm{F}$	$T_{\circ} F=32+(9 / 5) T^{\circ} \mathrm{C}$
Pressure P	Pascals	$\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}$

$1 \mathrm{cal}=4.1868 \mathrm{~J}, 1 \mathrm{hp}=745.7 \mathrm{~W}$
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
$0^{\circ} \mathrm{C}=273.15^{\circ} \mathrm{K}, N_{A}=6.023 \times 10^{23}$
$R=8.31 \mathrm{~J} /\left(\mathrm{mol}^{\circ} \mathrm{K}\right), k_{B}=R / N_{A}=1.38 \times 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}$
$\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)$
$v_{\text {sound }}=331 \sqrt{T / 273} \mathrm{~m} / \mathrm{s}$
$\mathrm{H}_{2} 0: c_{\text {ice }, \text { liq.,steam }}=\{0.5,1.0,0.48\} \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$
$L_{F, V}=\{80,540\} \mathrm{cal} / \mathrm{g}, \rho=1.0 \mathrm{~g} / \mathrm{cm}^{3}$.
1-d motion, constant a
$x=(1 / 2)\left(v_{0}+v_{f}\right) t$
$v_{f}=v_{0}+a t$
$x=v_{0} t+(1 / 2) a t^{2}$
$x=v_{f} t-(1 / 2) a t^{2}$
$(1 / 2) v_{f}^{2}-(1 / 2) v_{0}^{2}=a x$
Momentum, Force and Impulse
$p=m v, F=m a=\Delta p / \Delta t$
$I=F \Delta t=\Delta p$
Friction: $F_{\text {fric }}=\mu N$
Spring: $F=-k x$

Scott Pratt - PHY 231 - Introductory Physics I - Spring 2005
final

Work, Energy and Power

$W=F x \cos \theta, K E=(1 / 2) m v^{2}, P=\Delta E / \Delta t=F v$
Spring: $P E=(1 / 2) k x^{2}$

Rotational Motion

$v=\omega r=2 \pi r / T, \quad \omega=\Delta \theta / \Delta t=2 \pi f=2 \pi / T, f=1 / T$
$\alpha=\left(\omega_{f}-\omega_{0}\right) / t=\frac{a}{r}$
$L=I \omega=m v r \sin \theta,(\theta=$ angle between v and r$)$
$K E=(1 / 2) I \omega^{2}=L^{2} /(2 I)$
$\tau=r F \sin \theta, I \alpha=\tau, I_{\text {point }}=m R^{2}$
$I_{\text {cyl.shell }}=M R^{2}, I_{\text {sphere }}=(2 / 5) M R^{2}$
$I_{\text {solid cyl. }}=(1 / 2) M R^{2}, I_{\text {sph. shell }}=(2 / 3) M R^{2}$
$a=v^{2} / r=\omega v=\omega^{2} r$
Gravity and circular orbits
$P E=-G \frac{M m}{r}, \Delta P E=m g h($ small $h)$

$$
F=G \frac{M m}{r^{2}}, \quad \frac{G M}{4 \pi^{2}}=\frac{R^{3}}{T^{2}}
$$

Gases, liquids and solids
$P=F / A, P V=N R T, \Delta P=\rho g h$
$\left\langle(1 / 2) m v^{2}\right\rangle=(3 / 2) k_{B} T$
$F_{\text {bouyant }}=\rho_{\text {displaced liq. }} \cdot V_{\text {displaced liq. }} g$
Stress $=F / A$, Strain $=\Delta L / L, Y=$ Stress $/$ Strain
$\frac{\Delta L}{L}=\frac{F / A}{Y}, \frac{\Delta V}{V}=\frac{-\Delta P}{B}, Y=3 B$
Bernoulli: $P_{a}+\frac{1}{2} \rho_{a} v_{a}^{2}+\rho_{a} g h_{a}=P_{b}+\frac{1}{2} \rho_{b} v_{b}^{2}+\rho_{b} g h_{b}$
Heat
$\Delta L / L=\alpha \Delta T, \Delta V / V=3 \alpha \Delta T$
$Q=m C_{v} \Delta T+m L$ (if phase trans.)
Conduction and Radiation
$P=k A\left(T_{b}-T_{a}\right) / \Delta x=A\left(T_{b}-T_{a}\right) / R$,
$R \equiv \Delta x / k, P=e \sigma A T^{4}$

Thermodynamics

$\Delta U=Q+W, \quad W=-P \Delta V$, ideal gas: $\Delta U=n C_{V} \Delta T$
Adiabatic exp: $p V^{\gamma}=$ const, $T V^{\gamma-1}=$ const
$\gamma=C_{p} / C_{V}=5 / 3$ (monotonic), $=7 / 5$ (diatomic)
$Q=T \Delta S, \Delta S>0$
Engines: $W=\left|Q_{H}\right|-\left|Q_{L}\right|$
$\epsilon=W / Q_{H}<\left(T_{H}-T_{L}\right) / T_{H}<1$
Refrigerators and heat pumps: $W=\left|Q_{H}\right|-\left|Q_{L}\right|$
$\epsilon=Q_{L} / W<T_{L} /\left(T_{H}-T_{L}\right)$

Simple Harmonic Motion and Waves

$f=1 / T, \omega=2 \pi f$
$x(t)=A \cos (\omega t-\phi), v=-\omega A \sin (\omega t-\phi)$
$a=-\omega^{2} A \cos (\omega t-\phi)$
Spring: $\omega=\sqrt{k / m}$
Pendulum: $T=2 \pi \sqrt{L / g}$
Waves: $y(x, t)=A \sin [2 \pi(f t-x / \lambda+\delta)], v=f \lambda$
$I=\operatorname{const} A^{2} f^{2}, I_{2} / I_{1}=R_{1}^{2} / R_{2}^{2}$
Standing waves: $\lambda_{n}=2 L / n$
Strings: $v=\sqrt{T / \mu}$
Solid/Liquid: $v=\sqrt{B / \rho}$
Sound: $I=$ Power $/ A=I_{0} 10^{\beta / 10}, I_{0} \equiv 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$
Decibels: $\beta=10 \log _{10}\left(I / I_{0}\right)$
Beat freq. $=\left|f_{1}-f_{2}\right|$
Doppler: $f_{\text {obs }}=f_{\text {source }}\left(V_{\text {sound }} \pm v_{\text {obs }}\right) /\left(V_{\text {sound }} \pm v_{\text {source }}\right)$
Pipes: same at both ends: $L=\lambda / 2, \lambda, 3 \lambda / 2$
Pipes: open at only one end: $L=\lambda / 4,3 \lambda / 4,5 \lambda / 4 \cdots$

Scott Pratt - PHY 231 - Introductory Physics I - Spring
2005

3 pt Consider a projectile which strikes a target as shown below. Ignore all forces except gravity. Point A refers to a point just beyond the muzzle of the cannon, B refers to the highest point in the trajectory and C refers to a point just before landing on the cliff.

\triangleright The acceleration at B is _--- the acceleration at C.

1. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
\triangleright The magnitude of the vertical component of the velocity at A is .--- the magnitude of the vertical component of the velocity at C
2. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
\triangleright The horizontal component of the velocity at A is \qquad than the horizontal component of the velocity at C.
3. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to

A hot $\left(800^{\circ} \mathrm{K}\right)$ and a cold $\left(200^{\circ} \mathrm{K}\right)$ object are connected by two aluminum bars as shown.
\triangleright Considering the left configuration only, lowering the temperature of the $800^{\circ} \mathrm{K}$ block to $400{ }^{\circ} \mathrm{K}$ will reduce the rate of heat transfer by a factor of
4. $\mathbf{A} \bigcirc$ one fourth $\mathbf{B} \bigcirc$ one half
$\mathbf{C} \bigcirc$ one third
\triangleright Compared to the configuration on the left, the rate of heat transferred in configuration shown the right is \qquad as high.
5. $\mathbf{A} \bigcirc$ one fourth $\mathbf{B} \bigcirc$ one half
$\mathrm{C} \bigcirc$ one third

Scott Pratt - PHY 231 - Introductory Physics I - Spring
$2 p t$ Dumb Dora slides a bumper car down an icy frictionless hill of height h. At the bottom of the hill, she collides headon with her lifetime companion Brainless Billy, who is at rest in his bumper car. The two cars, including their dimwitted passengers, have equal mass. After the collision the two cars stick together. Their speed after the collision is 20 mph .
\triangleright If the collision is repeated, but they bounce off each other elastically, Billy's final speed will be \qquad
6. $\begin{array}{lll}\mathbf{A} \bigcirc 20 \mathrm{mph} & \mathbf{B} \bigcirc 28.284 \mathrm{mph} & \mathbf{C} \bigcirc 40 \mathrm{mph} \\ \mathbf{D} \bigcirc 80 \mathrm{mph} & \end{array}$
\triangleright Just before the collision, Dora's speed was \qquad
7. $\mathbf{A} \bigcirc 20 \mathrm{mph} \quad \mathbf{B} \bigcirc 28.284 \mathrm{mph} \quad \mathbf{C} \bigcirc 40 \mathrm{mph}$ D $\bigcirc 80 \mathrm{mph}$

Identical spheres are suspended by light strings. If air is blown between the spheres, the spheres will \qquad
\triangleright
8. $\mathbf{A} \bigcirc$ move toward one another

B move away from one another
$\mathbf{C} \bigcirc$ stay the same distance apart
$1 p t$ A train passes a station at constant speed, blowing its whistle twice: once while approaching the station and again after passing the station. To an observer standing on the station's platform,
\triangleright the frequency of the second blast was \qquad the frequency of the first blast.
9. $\mathbf{A} \bigcirc$ higher than $\mathbf{B} \bigcirc$ lower than $\mathbf{C} \bigcirc$ equal to

Scott Pratt - PHY 231 - Introductory Physics I - Spring

A massive piston traps a fixed amount of helium gas as shown. After being brought to point (a) the system equilibrates to room temperature. Weight is then added on top of the piston and the gas is ADIABATICALLY compressed to half of its original volume (b).
\triangleright The temperature T_{b} is \qquad T_{a}.
10. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
\triangleright the pressure P_{b} is \qquad P_{a}.
11. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than
$\mathbf{C} \bigcirc$ equal to
\triangleright The internal energy U_{b} is \qquad U_{a}.
12. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
\triangleright The entropy of the gas at "b" is \qquad the entropy of the gas at "a".
13. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
$3 p t$ Answer the following questions about thermodynamics.
\triangleright An air conditioner uses an amount of electrical energy U to cool a home. The amount of heat moved from inside the home must be less than or equal to U .
14. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright If an engine does an amount of work W , and exhausts heat at a temperature of 50 degrees C, the chemical energy contained in the fuel must be greater than, and not equal to, W.
15. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright A heat pump uses an amount of electrical energy U to heat a home. The amount of heat added to a home must be less than or equal to U .
16. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

Scott Pratt - PHY 231 - Introductory Physics I - Spring 2005

1 pt A pipe is 3.4 m long and is open at one end and closed at the other end. What are the first three frequencies for standing waves generated in the pipe? DATA: The speed of sound is $340 \mathrm{~m} / \mathrm{s}$.
-
17. $\mathbf{A} \bigcirc 100 \mathrm{~Hz}, 200 \mathrm{~Hz}, 300 \mathrm{~Hz}$

B $100 \mathrm{~Hz}, 200 \mathrm{~Hz}, 400 \mathrm{~Hz}$
C $\bigcirc 100 \mathrm{~Hz}, 300 \mathrm{~Hz}, 500 \mathrm{~Hz}$
D $50 \mathrm{~Hz}, 100 \mathrm{~Hz}, 150 \mathrm{~Hz}$
E $50 \mathrm{~Hz}, 150 \mathrm{~Hz}, 250 \mathrm{~Hz}$
F $\bigcirc 200 \mathrm{~Hz}, 400 \mathrm{~Hz}, 600 \mathrm{~Hz}$
$\mathbf{G} \bigcirc$ impossible to calculate
$\mathbf{H} \bigcirc 25 \mathrm{~Hz}, 75 \mathrm{~Hz}, 125 \mathrm{~Hz}$
1 pt Nolan Ryan throws a rock horizontally from the roof of a tall building with an initial speed of $41 \mathrm{~m} / \mathrm{s}$. The rock travels a horizontal distance of 56 m before it hits the ground. From what height (above the ground) was the ball released? (in m)

$\mathbf{1 8 . A} \bigcirc 6.68$	$\mathbf{B} \bigcirc 7.82$	$\mathbf{C} \bigcirc 9.15$	$\mathbf{D} \bigcirc 10.71$	
$\mathbf{E} \bigcirc 12.53$	$\mathbf{F} \bigcirc 14.66$	$\mathbf{G} \bigcirc 17.15$	$\mathbf{H} \bigcirc$	20.06

Scott Pratt - PHY 231 - Introductory Physics I - Spring
2005

Scott Pratt - PHY 231 - Introductory Physics I - Spring 2005

1 pt How much power does is required to pull up a load of bricks at a constant velocity. The mass of the load is 115 kg , the height raised is 300 m , and the time required is 101 seconds? The efficiency of the engine is 0.4 .

| $\mathbf{1 9 . A} \bigcirc$ | 5231 | $\mathbf{B} \bigcirc 6120$ | $\mathbf{C} \bigcirc 7160$ | $\mathbf{D} \bigcirc 8377$ |
| ---: | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 9802$ | $\mathbf{F} \bigcirc 11468$ | $\mathbf{G} \bigcirc$ | 13417 | $\mathbf{H} \bigcirc 15698$ |

e20c2 Brooks Cole Publishing-a division of Thomson Learning

1 pt
Assume that the three blocks in the figure move together on a frictionless surface and that a $\mathrm{T}=35 \mathrm{~N}$ force acts as shown on the $3.0-\mathrm{kg}$ block. What is the acceleration of the blocks? (in $\mathrm{m} / \mathrm{s}^{\wedge} 2$)

| $\mathbf{2 0 . A} \bigcirc 1.91$ | $\mathbf{B} \bigcirc 2.39$ | $\mathbf{C} \bigcirc 2.99$ | $\mathbf{D} \bigcirc 3.73$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 4.67$ | $\mathbf{F} \bigcirc 5.83$ | $\mathbf{G} \bigcirc 7.29$ | $\mathbf{H} \bigcirc 9.11$ |

$1 p t$ Beginning at rest at an extremely large separation, a ball is released and allowed to fall toward a star of mass $4.70 \mathrm{E}+30 \mathrm{~kg}$ and radius $8.50 \mathrm{E}+7 \mathrm{~m}$. What is the speed of the ball when it reaches the surface? (in m / s)

$\mathbf{2 1 . A} \bigcirc 6.53 \times 10^{5}$	$\mathbf{B} \bigcirc 8.68 \times 10^{5}$	$\mathbf{C} \bigcirc 1.15 \times 10^{6}$	
$\mathbf{D} \bigcirc 1.54 \times 10^{6}$	$\mathbf{E} \bigcirc 2.04 \times 10^{6}$	$\mathbf{F} \bigcirc$	2.72×10^{6}
$\mathbf{G} \bigcirc 3.61 \times 10^{6}$	$\mathbf{H} \bigcirc 4.80 \times 10^{6}$		

In an amusement park ride, a rotating cylinder of radius 3.05 m rotates as seen above. The floor then drops away, leaving the riders suspended against the wall in a vertical position. If the coefficient of friction between the rider's clothes and the wall is 0.32 , what is the minimum rotational frequencey necessary to keep the rider pinned to the wall?

$\mathbf{2 2 . A} \bigcirc$	0.114	$\mathbf{B} \bigcirc 0.166$	$\mathbf{C} \bigcirc 0.240$	$\mathbf{D} \bigcirc$	0.348
$\mathbf{E} \bigcirc 0.505$	$\mathbf{F} \bigcirc 0.732$	$\mathbf{G} \bigcirc 1.061$	$\mathbf{H} \bigcirc$	1.538	

Scott Pratt - PHY 231 - Introductory Physics I - Spring
$1 p t$ A solid cylinder $\left(I=M R^{2} / 2\right)$ rolls down a hill of height 25 m without slipping. What is the velocity of the cyclinder at the bottom of the hill? DATA: $\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2} \quad(i n \mathrm{~m} / \mathrm{s})$

| 23.A $\bigcirc 5.8$ | $\mathbf{B} \bigcirc 7.7$ | $\mathbf{C} \bigcirc 10.2$ | $\mathbf{D} \bigcirc 13.6$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 18.1$ | $\mathbf{F} \bigcirc 24.0$ | $\mathbf{G} \bigcirc 32.0$ | $\mathbf{H} \bigcirc 42.5$ |

A stainless steel orthodontic wire is applied to a tooth, as shown in the figure above. The wire has an unstretched length of 25 mm and a cross sectional area of $3 \mathrm{~mm}^{2}$. The wire is stretched 0.1 mm . Young's modulus for stainless steel is $1.8 \times 10^{11} \mathrm{~Pa}$. What is the tension in the wire? (in N)

$\mathbf{2 4 . A} \bigcirc 1497$	$\mathbf{B} \bigcirc$	1692	$\mathbf{C} \bigcirc 1912$	$\mathbf{D} \bigcirc$	2160
$\mathbf{E} \bigcirc 2441$	$\mathbf{F} \bigcirc 2758$	$\mathbf{G} \bigcirc$	3117	$\mathbf{H} \bigcirc 3522$	

Two wires support a beam of length $\mathrm{L}=12$ as shown in the figure above. A box of weight 350 N hangs from a wire which is connected a distance of 9 m from the left edge of the beam. The mass of the beam is unknown. If the tension in the left support wire is 700 N , what is the tension in the right support wire?
DATA: $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ (in N)

$\mathbf{2 5} . \mathbf{A} \bigcirc$	875	$\mathbf{B} \bigcirc$	1164	$\mathbf{C} \bigcirc$	1548
$\mathbf{D} \bigcirc$	$\mathbf{D} \bigcirc 2059$				
$\mathbf{E} \bigcirc$	2738	$\mathbf{F} \bigcirc$	3641	$\mathbf{G} \bigcirc$	4843

1 pt Working for the Portugese Navy, Elsia Ovideo is designing a sonar device. Elsia does not know the speed of sound through the water due to the unknown salinity, but observes that sound of a frequency 7300 Hz has a wavelength of 28.08 cm . How much time would be required for a sound pulse to travel to the floor of the ocean and return if the depth of the ocean is 5520 m ? (in s)

| $\mathbf{2 6 . A} \bigcirc 3.73$ | $\mathbf{B} \bigcirc 4.22$ | $\mathbf{C} \bigcirc 4.77$ | $\mathbf{D} \bigcirc 5.39$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 6.09$ | $\mathbf{F} \bigcirc 6.88$ | $\mathbf{G} \bigcirc 7.77$ | $\mathbf{H} \bigcirc 8.78$ |

Scott Pratt - PHY 231 - Introductory Physics I - Spring 2005

Scott Pratt - PHY 231 - Introductory Physics I - Spring 2005
final
$1 p t$ To take the place of shock absorbers, a go-cart has a spring on each wheel with $\mathrm{k}=650 \mathrm{~N} / \mathrm{m}$. Including the passenger, the mass of the vehicle is 155 kg . What would be the period of oscillation of the car (in sec) if it were to hit a rock or pot hole?

| $\mathbf{2 7} . \mathbf{A} \bigcirc$ | 0.11 | $\mathbf{B} \bigcirc$ | 0.17 | $\mathbf{C} \bigcirc 0.24$ | $\mathbf{D} \bigcirc$ |
| ---: | :--- | :--- | :--- | :--- | :--- | $\mathbf{0 . 3 5}$

1 pt Two point sound sources, source A and source B , have powers 4 and 75 W respectively. If you are 5.5 meters from source A, how far should you be from source B to make the two have equal sound intensity level?

$\mathbf{2 8 . A} \bigcirc 7.94$	$\mathbf{B} \bigcirc 9.28$	$\mathbf{C} \bigcirc 10.86$	$\mathbf{D} \bigcirc 12.71$	
$\mathbf{E} \bigcirc 14.87$	$\mathbf{F} \bigcirc 17.40$	$\mathbf{G} \bigcirc 20.36$	$\mathbf{H} \bigcirc$	23.82

1 pt Two sounds have intensities $6 \cdot 10^{-3}$ and 4.5•10 0^{-7}
$\mathrm{W} / \mathrm{m}^{2}$. What is the magnitude of the difference in intensity levels between the two sounds in dB ?

$\mathbf{2 9 . A} \bigcirc 26.40$	$\mathbf{B} \bigcirc 33.00$	$\mathbf{C} \bigcirc 41.25$	
$\mathbf{D} \bigcirc 51.56$	$\mathbf{E} \bigcirc 64.45$	$\mathbf{F} \bigcirc 80.57$	
$\mathbf{G} \bigcirc 100.71$	$\mathbf{H} \bigcirc 125.88$		

A gas is taken through the cyclic process described by the figure above. How much work was done by the gas during the cycle ABCA? (in J)

```
30.A\bigcirc10619 B}\bigcirc12000\quad\mathbf{C}\bigcirc13560 \mathbf{D}\bigcirc1532
    E\bigcirc 17315 F
```

1 pt The motion of an object is described by the equation: $\mathrm{x}=(1.5 \mathrm{~m}) \cos (\pi \mathrm{t} / 2.3)$,
where t is assumed to be measured in seconds. What is the frequency (in Hz) of the motion?

$\mathbf{3 1 . A} \bigcirc$	0.163	$\mathbf{B} \bigcirc$	0.217	$\mathbf{C} \bigcirc 0.289$	$\mathbf{D} \bigcirc$
$\mathbf{E} \bigcirc$	0.311	$\mathbf{F} \bigcirc$	0.680	$\mathbf{G} \bigcirc 0.905$	$\mathbf{H} \bigcirc$
1.203					

A steel wire in a piano has a length of 90 cm and a mass of 4.3 g . To what tension must this wire be stretched in order that the fundamental vibration correspond to middle C (fC $=261.6 \mathrm{~Hz}$ on the chromatic musical scale)?

$1 p t$	$($ in N$)$		
$\mathbf{3 2 . A} \bigcirc 1059.4$	$\mathbf{B} \bigcirc 1536.1$	$\mathbf{C} \bigcirc 2227.3$	
$\mathbf{D} \bigcirc 3229.6$	$\mathbf{E} \bigcirc 4682.9$	$\mathbf{F} \bigcirc 6790.3$	
$\mathbf{G} \bigcirc 9845.9$	$\mathbf{H} \bigcirc 14276.5$		

$1 p t$ At high noon, the Sun delivers 1.11 kW to each square meter of a blacktop road. If the hot asphalt loses energy only by radiation, what is its equilibrium temperature (in degrees Celsius) of the road surface?

$\mathbf{3 3 . A} \bigcirc 69.6$	$\mathbf{B} \bigcirc 100.9$	$\mathbf{C} \bigcirc 146.3$	$\mathbf{D} \bigcirc 212.2$
$\mathbf{E} \bigcirc 307.6$	$\mathbf{F} \bigcirc 446.1$	$\mathbf{G} \bigcirc 646.8$	$\mathbf{H} \bigcirc 937.9$

