Scott Pratt - PHY 231 - Introductory Physics I - Spring 2005

Quadratic Formula
$a x^{2}+b x+c=0$,
$x=\left[-b \pm \sqrt{b^{2}-4 a c}\right] /(2 a)$
Geometry
Circle: circumference $=2 \pi R$, area $=\pi R^{2}$
Sphere: area $=4 \pi R^{2}$, volume $=4 \pi R^{3} / 3$
Trigonometry

$$
\sin \alpha=\frac{A}{C}, \quad \cos \alpha=\frac{B}{C}
$$

$$
\tan \alpha=\frac{A}{B}
$$

$$
\begin{gathered}
\frac{\sin \alpha}{A}=\frac{\sin \beta}{B}=\frac{\sin \gamma}{C} \\
A^{2}+B^{2}-2 A B \cos \gamma=C^{2}
\end{gathered}
$$

Polar Coordinates

$x=r \cos \theta, \quad y=r \sin \theta$
$r=\sqrt{x^{2}+y^{2}}, \quad \tan \theta=y / x$
SI Units and Constants

quantity	unit	abbreviation
Mass m	kilograms	kg
Distance x	meters	m
Time t	seconds	s
Force F	Newtons	$\mathrm{N}=\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$
Energy E	Joules	$\mathrm{J}=\mathrm{N} \mathrm{m}$
Power P	Watts	$\mathrm{W}=\mathrm{J} / \mathrm{s}$
Temperature T	${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{K}$ or ${ }^{\circ} \mathrm{F}$	$T_{\circ} F=32+(9 / 5) T^{\circ} \mathrm{C}$
Pressure P	Pascals	$\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}$

$1 \mathrm{cal}=4.1868 \mathrm{~J}, 1 \mathrm{hp}=745.7 \mathrm{~W}$
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
$0^{\circ} \mathrm{C}=273.15^{\circ} \mathrm{K}, N_{A}=6.023 \times 10^{23}$
$R=8.31 \mathrm{~J} /\left(\mathrm{mol}^{\circ} \mathrm{K}\right), k_{B}=R / N_{A}=1.38 \times 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}$
$\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)$
$v_{\text {sound }}=331 \sqrt{T / 273} \mathrm{~m} / \mathrm{s}$
$\mathrm{H}_{2} 0: c_{\text {ice }, \text { liq.,steam }}=\{0.5,1.0,0.48\} \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$
$L_{F, V}=\{80,540\} \mathrm{cal} / \mathrm{g}, \rho=1.0 \mathrm{~g} / \mathrm{cm}^{3}$.
1-d motion, constant a
$x=(1 / 2)\left(v_{0}+v_{f}\right) t$
$v_{f}=v_{0}+a t$
$x=v_{0} t+(1 / 2) a t^{2}$
$x=v_{f} t-(1 / 2) a t^{2}$
$(1 / 2) v_{f}^{2}-(1 / 2) v_{0}^{2}=a x$
Momentum, Force and Impulse
$p=m v, F=m a=\Delta p / \Delta t$
$I=F \Delta t=\Delta p$
Friction: $F_{\text {fric }}=\mu N$
Spring: $F=-k x$

Scott Pratt - PHY 231 - Introductory Physics I - Spring 2005

Work, Energy and Power

$W=F x \cos \theta, K E=(1 / 2) m v^{2}, P=\Delta E / \Delta t=F v$
Spring: $P E=(1 / 2) k x^{2}$

Rotational Motion

$v=\omega r=2 \pi r / T, \omega=\Delta \theta / \Delta t=2 \pi f=2 \pi / T, f=1 / T$
$\alpha=\left(\omega_{f}-\omega_{0}\right) / t=\frac{a}{r}$
$L=I \omega=m v r \sin \theta,(\theta=$ angle between v and r$)$
$K E=(1 / 2) I \omega^{2}=L^{2} /(2 I)$
$\tau=r F \sin \theta, I \alpha=\tau, I_{\text {point }}=m R^{2}$
$I_{\text {cyl.shell }}=M R^{2}, I_{\text {sphere }}=(2 / 5) M R^{2}$
$I_{\text {solid cyl. }}=(1 / 2) M R^{2}, I_{\text {sph. shell }}=(2 / 3) M R^{2}$
$a=v^{2} / r=\omega v=\omega^{2} r$
Gravity and circular orbits
$P E=-G \frac{M m}{r}, \Delta P E=m g h($ small $h)$

$$
F=G \frac{M m}{r^{2}}, \quad \frac{G M}{4 \pi^{2}}=\frac{R^{3}}{T^{2}}
$$

Gases, liquids and solids
$P=F / A, P V=N R T, \Delta P=\rho g h$
$\left\langle(1 / 2) m v^{2}\right\rangle=(3 / 2) k_{B} T$
$F_{\text {bouyant }}=\rho_{\text {displaced liq. }} \cdot V_{\text {displaced liq. }} g$
Stress $=F / A$, Strain $=\Delta L / L, Y=$ Stress $/$ Strain
$\frac{\Delta L}{L}=\frac{F / A}{Y}, \frac{\Delta V}{V}=\frac{-\Delta P}{B}, Y=3 B$
Bernoulli: $P_{a}+\frac{1}{2} \rho_{a} v_{a}^{2}+\rho_{a} g h_{a}=P_{b}+\frac{1}{2} \rho_{b} v_{b}^{2}+\rho_{b} g h_{b}$
Heat
$\Delta L / L=\alpha \Delta T, \Delta V / V=3 \alpha \Delta T$
$Q=m C_{v} \Delta T+m L$ (if phase trans.)
Conduction and Radiation
$P=k A\left(T_{b}-T_{a}\right) / \Delta x=A\left(T_{b}-T_{a}\right) / R$,
$R \equiv \Delta x / k, P=e \sigma A T^{4}$

Thermodynamics

$\Delta U=Q+W, \quad W=-P \Delta V$, ideal gas: $\Delta U=n C_{V} \Delta T$
Adiabatic exp: $p V^{\gamma}=$ const, $T V^{\gamma-1}=$ const
$\gamma=C_{p} / C_{V}=5 / 3$ (monotonic), $=7 / 5$ (diatomic)
$Q=T \Delta S, \Delta S>0$
Engines: $W=\left|Q_{H}\right|-\left|Q_{L}\right|$
$\epsilon=W / Q_{H}<\left(T_{H}-T_{L}\right) / T_{H}<1$
Refrigerators and heat pumps: $W=\left|Q_{H}\right|-\left|Q_{L}\right|$
$\epsilon=Q_{L} / W<T_{L} /\left(T_{H}-T_{L}\right)$

Simple Harmonic Motion and Waves

$f=1 / T, \omega=2 \pi f$
$x(t)=A \cos (\omega t-\phi), v=-\omega A \sin (\omega t-\phi)$
$a=-\omega^{2} A \cos (\omega t-\phi)$
Spring: $\omega=\sqrt{k / m}$
Pendulum: $T=2 \pi \sqrt{L / g}$
Waves: $y(x, t)=A \sin [2 \pi(f t-x / \lambda+\delta)], v=f \lambda$
$I=\operatorname{const} A^{2} f^{2}, I_{2} / I_{1}=R_{1}^{2} / R_{2}^{2}$
Standing waves: $\lambda_{n}=2 L / n$
Strings: $v=\sqrt{T / \mu}$
Solid/Liquid: $v=\sqrt{B / \rho}$
Sound: $I=$ Power $/ A=I_{0} 10^{\beta / 10}, I_{0} \equiv 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$
Decibels: $\beta=10 \log _{10}\left(I / I_{0}\right)$
Beat freq. $=\left|f_{1}-f_{2}\right|$
Doppler: $f_{\text {obs }}=f_{\text {source }}\left(V_{\text {sound }} \pm v_{\text {obs }}\right) /\left(V_{\text {sound }} \pm v_{\text {source }}\right)$
Pipes: same at both ends: $L=\lambda / 2, \lambda, 3 \lambda / 2$
Pipes: open at only one end: $L=\lambda / 4,3 \lambda / 4,5 \lambda / 4 \cdots$

Scott Pratt - PHY 231 - Introductory Physics I - Spring
2005
midterm1

2 pt From dimensional analysis, mark these formulas as either 'valid' or 'invalid'. Assume that x has dimensions of distance, v has dimensions of velocity, t has dimensions of time, g has dimensions of acceleration and m has dimensions of mass.
$\triangleright m(x+v t) /(1+g t)=m g t^{2} / 2$

1. $\mathbf{A} \bigcirc$ valid $\mathbf{B} \bigcirc$ invalid
$\triangleright v t / x=7 / 2$
2. $\mathbf{A} \bigcirc$ valid $\mathbf{B} \bigcirc$ invalid

4 pt A student hurls a baseball directly upward with an initial speed of $40 \mathrm{~m} / \mathrm{s}$. Later, the student catches the baseball at the same position from which it was released. For the following statements, displacements are measured relative to the release point and the upward direction is positive.
\triangleright At its highest point, the baseball has zero acceleration.
3. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright At its highest point, the baseball has zero velocity.
4. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright During the entire flight, the velocity of the baseball is positive or zero.
5. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright During the entire flight, the displacement of the baseball is positive or zero.
6. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

Scott Pratt - PHY 231 - Introductory Physics I - Spring 2005
midterm1

\triangleright The acceleration is negative in region _-_-.
7. $\mathbf{A} \bigcirc \mathrm{AB} \quad \mathbf{B} \bigcirc \mathrm{CD} \quad \mathbf{C} \bigcirc \mathrm{DE} \quad \mathbf{D} \bigcirc \mathrm{EF}$
\triangleright The velocity is uniform and positive in region \qquad
8. $\mathbf{A} \bigcirc \mathrm{AB} \quad \mathbf{B} \bigcirc \mathrm{CD} \quad \mathbf{C} \bigcirc \mathrm{DE} \quad \mathbf{D} \bigcirc \mathrm{EF}$
\triangleright The acceleration is positive in region .--..
9. $\mathbf{A} \bigcirc \mathrm{AB} \quad \mathbf{B} \bigcirc \mathrm{CD} \quad \mathbf{C} \bigcirc \mathrm{DE} \quad \mathbf{D} \bigcirc \mathrm{EF}$
\triangleright The velocity is uniform and negative in region \qquad
10. $\mathbf{A} \bigcirc \mathrm{AB} \quad \mathbf{B} \bigcirc \mathrm{CD} \quad \mathbf{C} \bigcirc \mathrm{DE} \quad \mathbf{D} \bigcirc \mathrm{EF}$

Scott Pratt - PHY 231 - Introductory Physics I - Spring 2005
midterm1
e20C2 Brooks Cole Publishing-a division of Thomson Learning

1 pt
Assume that the three blocks in the figure move together on a frictionless surface and that a $\mathrm{T}=35 \mathrm{~N}$ force acts as shown on the $3.0-\mathrm{kg}$ block. What is the tension in the cord connecting the $3.0-\mathrm{kg}$ and the $1.0-\mathrm{kg}$ blocks? (in N)
$11 . A \bigcirc 9.50$
$\mathbf{E} \bigcirc 15.49$
$\mathbf{B} \bigcirc 10.73$
$\mathbf{C} \bigcirc 12.13$
D〇 13.71
15.49
F \bigcirc
17.50
G \bigcirc
19.77
$\mathbf{H} \bigcirc 22.35$

1 pt A ball is pushed down a hill with an initial velocity of
$2.1 \mathrm{~m} / \mathrm{s}$. It accelerates down hill with a uniform acceleration of $2.2 \mathrm{~m} / \mathrm{s}^{2}$. The ball reaches the bottom of the hill in 11 seconds. What is its speed when it reaches the bottom of the hill? (in m / s)

| $\mathbf{1 2 . A} \bigcirc 16.1$ | $\mathbf{B} \bigcirc 18.2$ | $\mathbf{C} \bigcirc 20.6$ | $\mathbf{D} \bigcirc 23.3$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 26.3$ | $\mathbf{F} \bigcirc 29.7$ | $\mathbf{G} \bigcirc 33.6$ | $\mathbf{H} \bigcirc 37.9$ |

A lamp is hung as shown where the angle of the support wires is $\theta=45$ degrees. If the maximum tension either wire can handle is 45 lbs , what is the maximum weight of a lamp that can be supported? (in lbs)

| $\mathbf{1 3 . A} \bigcirc 40.7$ | $\mathbf{B} \bigcirc 50.9$ | $\mathbf{C} \bigcirc 63.6$ | $\mathbf{D} \bigcirc 79.5$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 99.4$ | $\mathbf{F} \bigcirc 124.3$ | $\mathbf{G} \bigcirc 155.4$ | $\mathbf{H} \bigcirc 194.2$ |

Scott Pratt - PHY 231 - Introductory Physics I - Spring 2005

Scott Pratt - PHY 231 - Introductory Physics I - Spring 2005

1 pt Nolan Ryan throws a rock horizontally from the roof of a tall building with an initial speed of $35 \mathrm{~m} / \mathrm{s}$. The rock travels a horizontal distance of 68 m before it hits the ground. From what height (above the ground) was the ball released? (in m)

$\mathbf{1 4 . A} \bigcirc 5.92$	$\mathbf{B} \bigcirc 7.87$	$\mathbf{C} \bigcirc 10.47$	$\mathbf{D} \bigcirc 13.92$
$\mathbf{E} \bigcirc 18.51$	$\mathbf{F} \bigcirc 24.62$	$\mathbf{G} \bigcirc 32.75$	$\mathbf{H} \bigcirc 43.56$

1 pt After landing, a jet airplane comes to rest uniformly (the acceleration is constant) in 9.1 seconds. The landing speed of the aircraft is $188 \mathrm{~km} /$ hour. How far, in m , does the aircraft roll?

| $\mathbf{1 5 . A} \bigcirc 173.7$ | $\mathbf{B} \bigcirc 203.2$ | $\mathbf{C} \bigcirc 237.8$ | $\mathbf{D} \bigcirc 278.2$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 325.5$ | $\mathbf{F} \bigcirc 380.9$ | $\mathbf{G} \bigcirc 445.6$ | $\mathbf{H} \bigcirc 521.4$ |

1 pt Just as the star ship Enterprise enters the Klingon sector, a Klingon ship is sighted. The Enterprise immediately accelerates in the same direction with a constant acceleration equal to 0.11 light-years $/ \mathrm{s}^{2}$. The Enterprise leaves the sector 73 seconds later with a velocity of 36.5 light-years/s. What distance did the Enterprise travel through the sector? (In light-years)

$\mathbf{1 6 . A} \bigcirc$	1341	$\mathbf{B} \bigcirc$	1783	$\mathbf{C} \bigcirc$	2371
$\mathbf{D} \bigcirc$	3154				
$\mathbf{E} \bigcirc$	4195	$\mathbf{F} \bigcirc$	5579	$\mathbf{G} \bigcirc$	7420

$1 p t$ A pick-up truck carries a heavy crate in the back. The coefficient of static friction between the crate and the bed of the truck is 0.23 . What is the maximum acceleration the truck can undergo without the crate sliding? (in $\mathrm{m} / \mathrm{s}^{\wedge} 2$)

| $\mathbf{1 7 . A} \bigcirc 1.81$ | $\mathbf{B} \bigcirc 2.26$ | $\mathbf{C} \bigcirc 2.82$ | $\mathbf{D} \bigcirc 3.53$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 4.41$ | $\mathbf{F} \bigcirc 5.51$ | $\mathbf{G} \bigcirc 6.89$ | $\mathbf{H} \bigcirc 8.61$ |

1 pt Goodyear Tire and Rubber Company wants to measure the coefficient of friction for a new miracle rubber compound by sliding a block down an inclined plane, where the surface of the block is coated with the new compound. If the block slides at constant velocity down the plane when the plane is inclined at an angle of 49 degrees, what is the kinetic coefficient of friction?

$\mathbf{1 8 . A} \bigcirc$	0.45	$\mathbf{B} \bigcirc$	0.52	$\mathbf{C} \bigcirc 0.61$	$\mathbf{D} \bigcirc 0.72$
$\mathbf{E} \bigcirc 0.84$	$\mathbf{F} \bigcirc$	0.98	$\mathbf{G} \bigcirc 1.15$	$\mathbf{H} \bigcirc$	1.35

$1 p t$ An airplane is on course to move due east (relative to the earth) despite a wind of $45 \mathrm{~m} / \mathrm{s}$ which is blowing from the north. The plane is observed to have a ground speed of $143.1 \mathrm{~m} / \mathrm{s}$. What would the speed of the plane be if there were no wind? (in m / s)

| $\mathbf{1 9 . A} \bigcirc 93.7$ | $\mathbf{B} \bigcirc 109.6$ | $\mathbf{C} \bigcirc 128.2$ | $\mathbf{D} \bigcirc 150.0$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 175.5$ | $\mathbf{F} \bigcirc 205.3$ | $\mathbf{G} \bigcirc 240.2$ | $\mathbf{H} \bigcirc 281.1$ |

1 pt A rocket, starting from rest, experiences a uniform acceleration of $15.5 \mathrm{~m} / \mathrm{s}^{2}$. What is its speed at the point where its displacement from its original location is 950 m ? (in m / s)

$\mathbf{2 0 . A} \bigcirc 171.6$	$\mathbf{B} \bigcirc 248.8$	$\mathbf{C} \bigcirc 360.8$	
$\mathbf{D} \bigcirc 523.2$	$\mathbf{E} \bigcirc 758.6$	$\mathbf{F} \bigcirc 1100.0$	
$\mathbf{G} \bigcirc 1595.0$	$\mathbf{H} \bigcirc 2312.7$		

Licensed under GNU General Public License

