Scott Pratt

Do not open exam until instructed to do so.

Scott Pratt - PHY 231 - Introductory Physics I - Spring

Quadratic Formula

$a x^{2}+b x+c=0$,
$x=\left[-b \pm \sqrt{b^{2}-4 a c}\right] /(2 a)$
Geometry
Circle: circumference $=2 \pi R$, area $=\pi R^{2}$
Sphere: area $=4 \pi R^{2}$, volume $=4 \pi R^{3} / 3$
Trigonometry

$$
\sin \alpha=\frac{A}{C}, \quad \cos \alpha=\frac{B}{C}
$$

$$
\tan \alpha=\frac{A}{B}
$$

$$
\begin{gathered}
\frac{\sin \alpha}{A}=\frac{\sin \beta}{B}=\frac{\sin \gamma}{C} \\
A^{2}+B^{2}-2 A B \cos \gamma=C^{2}
\end{gathered}
$$

Polar Coordinates

$x=r \cos \theta, \quad y=r \sin \theta$
$r=\sqrt{x^{2}+y^{2}}, \quad \tan \theta=y / x$
SI Units and Constants

quantity	unit	abbreviation
Mass m	kilograms	kg
Distance x	meters	m
Time t	seconds	s
Force F	Newtons	$\mathrm{N}=\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$
Energy E	Joules	$\mathrm{J}=\mathrm{N} \mathrm{m}$
Power P	Watts	$\mathrm{W}=\mathrm{J} / \mathrm{s}$
Temperature T	${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{K}$ or ${ }^{\circ} \mathrm{F}$	$T_{\circ} F=32+(9 / 5) T^{\circ} \mathrm{C}$
Pressure P	Pascals	$\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}$

$1 \mathrm{cal}=4.1868 \mathrm{~J}, 1 \mathrm{hp}=745.7 \mathrm{~W}$
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
$0^{\circ} \mathrm{C}=273.15^{\circ} \mathrm{K}, N_{A}=6.023 \times 10^{23}$
$R=8.31 \mathrm{~J} /\left(\mathrm{mol}^{\circ} \mathrm{K}\right), k_{B}=R / N_{A}=1.38 \times 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}$
$\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)$
$v_{\text {sound }}=331 \sqrt{T / 273} \mathrm{~m} / \mathrm{s}$
$\mathrm{H}_{2} 0: c_{\text {ice }, \text { liq.,steam }}=\{0.5,1.0,0.48\} \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$
$L_{F, V}=\{80,540\} \mathrm{cal} / \mathrm{g}, \rho=1.0 \mathrm{~g} / \mathrm{cm}^{3}$.
1-d motion, constant a
$x=(1 / 2)\left(v_{0}+v_{f}\right) t$
$v_{f}=v_{0}+a t$
$x=v_{0} t+(1 / 2) a t^{2}$
$x=v_{f} t-(1 / 2) a t^{2}$
$(1 / 2) v_{f}^{2}-(1 / 2) v_{0}^{2}=a x$
Momentum, Force and Impulse
$p=m v, F=m a=\Delta p / \Delta t$
$I=F \Delta t=\Delta p$
Friction: $F_{\text {fric }}=\mu N$
Spring: $F=-k x$

Scott Pratt - PHY 231 - Introductory Physics I - Spring 2005

Work, Energy and Power

$W=F x \cos \theta, K E=(1 / 2) m v^{2}, P=\Delta E / \Delta t=F v$
Spring: $P E=(1 / 2) k x^{2}$

Rotational Motion

$v=\omega r=2 \pi r / T, \quad \omega=\Delta \theta / \Delta t=2 \pi f=2 \pi / T, f=1 / T$
$\alpha=\left(\omega_{f}-\omega_{0}\right) / t=\frac{a}{r}$
$L=I \omega=m v r \sin \theta,(\theta=$ angle between v and r$)$
$K E=(1 / 2) I \omega^{2}=L^{2} /(2 I)$
$\tau=r F \sin \theta, I \alpha=\tau, I_{\text {point }}=m R^{2}$
$I_{\text {cyl.shell }}=M R^{2}, I_{\text {sphere }}=(2 / 5) M R^{2}$
$I_{\text {solid cyl. }}=(1 / 2) M R^{2}, I_{\text {sph. shell }}=(2 / 3) M R^{2}$
$a=v^{2} / r=\omega v=\omega^{2} r$
Gravity and circular orbits
$P E=-G \frac{M m}{r}, \Delta P E=m g h($ small $h)$

$$
F=G \frac{M m}{r^{2}}, \quad \frac{G M}{4 \pi^{2}}=\frac{R^{3}}{T^{2}}
$$

Gases, liquids and solids
$P=F / A, P V=N R T, \Delta P=\rho g h$
$\left\langle(1 / 2) m v^{2}\right\rangle=(3 / 2) k_{B} T$
$F_{\text {bouyant }}=\rho_{\text {displaced liq. }} . V_{\text {displaced liq. }} g$
Stress $=F / A$, Strain $=\Delta L / L, Y=$ Stress $/$ Strain
$\frac{\Delta L}{L}=\frac{F / A}{Y}, \frac{\Delta V}{V}=\frac{-\Delta P}{B}, Y=3 B$
Bernoulli: $P_{a}+\frac{1}{2} \rho_{a} v_{a}^{2}+\rho_{a} g h_{a}=P_{b}+\frac{1}{2} \rho_{b} v_{b}^{2}+\rho_{b} g h_{b}$
Heat
$\Delta L / L=\alpha \Delta T, \Delta V / V=3 \alpha \Delta T$
$Q=m C_{v} \Delta T+m L$ (if phase trans.)

Conduction and Radiation

$P=k A\left(T_{b}-T_{a}\right) / \Delta x=A\left(T_{b}-T_{a}\right) / R$,
$R \equiv \Delta x / k, P=e \sigma A T^{4}$

Thermodynamics

$\Delta U=Q+W, \quad W=-P \Delta V$, ideal gas: $\Delta U=n C_{V} \Delta T$
Adiabatic exp: $p V^{\gamma}=$ const, $T V^{\gamma-1}=$ const
$\gamma=C_{p} / C_{V}=5 / 3$ (monotonic), $=7 / 5$ (diatomic)
$Q=T \Delta S, \Delta S>0$
Engines: $W=\left|Q_{H}\right|-\left|Q_{L}\right|$
$\epsilon=W / Q_{H}<\left(T_{H}-T_{L}\right) / T_{H}<1$
Refrigerators and heat pumps: $W=\left|Q_{H}\right|-\left|Q_{L}\right|$
$\epsilon=Q_{L} / W<T_{L} /\left(T_{H}-T_{L}\right)$

Simple Harmonic Motion and Waves

$f=1 / T, \omega=2 \pi f$
$x(t)=A \cos (\omega t-\phi), v=-\omega A \sin (\omega t-\phi)$
$a=-\omega^{2} A \cos (\omega t-\phi)$
Spring: $\omega=\sqrt{k / m}$
Pendulum: $T=2 \pi \sqrt{L / g}$
Waves: $y(x, t)=A \sin [2 \pi(f t-x / \lambda+\delta)], v=f \lambda$
$I=\operatorname{const} A^{2} f^{2}, I_{2} / I_{1}=R_{1}^{2} / R_{2}^{2}$
Standing waves: $\lambda_{n}=2 L / n$
Strings: $v=\sqrt{T / \mu}$
Solid/Liquid: $v=\sqrt{B / \rho}$
Sound: $I=$ Power $/ A=I_{0} 10^{\beta / 10}, I_{0} \equiv 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$
Decibels: $\beta=10 \log _{10}\left(I / I_{0}\right)$
Beat freq. $=\left|f_{1}-f_{2}\right|$
Doppler: $f_{\text {obs }}=f_{\text {source }}\left(V_{\text {sound }} \pm v_{\text {obs }}\right) /\left(V_{\text {sound }} \pm v_{\text {source }}\right)$
Pipes: same at both ends: $L=\lambda / 2, \lambda, 3 \lambda / 2$
Pipes: open at only one end: $L=\lambda / 4,3 \lambda / 4,5 \lambda / 4 \cdots$

A hot $\left(800{ }^{\circ} \mathrm{K}\right)$ and a cold $\left(200^{\circ} \mathrm{K}\right)$ object are connected by two aluminum bars as shown.
\triangleright Compared to the configuration on the left, the rate of heat transferred in configuration shown the right is \qquad as high.

1. $\mathbf{A} \bigcirc$ one fourth $\mathbf{B} \bigcirc$ one half $\mathbf{C} \bigcirc$ one third
\triangleright Considering the left configuration only, lowering the temperature of the $800^{\circ} \mathrm{K}$ block to $400^{\circ} \mathrm{K}$ will reduce the rate of heat transfer by a factor of
2. $\mathbf{A} \bigcirc$ one fourth $\mathbf{B} \bigcirc$ one half $\mathbf{C} \bigcirc$ one third
You are correct. Your receipt is 154-1432
$4 p t$ A fixed number of moles of an ideal gas are kept in a container at a pressure P and temperature T .
\triangleright If P doubles while T is kept constant, the density of the gas will double.
3. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright If T quadruples, the r.m.s. velocity of the molecules in the gas will double.
4. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright If T doubles while P is held constant, the net internal energy of the gas will double.
5. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright If T doubles while P is held constant, the density must double.
6. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

You are correct. Your receipt is 154-1749

Scott Pratt - PHY 231 - Introductory Physics I - Spring 2005

4 pt Consider twins named Bert and Ernie who are visiting a planet named Izzone. Bert is standing at the top of the highest mountain on Izzone, a distance R from the center of the planet. Ernie flies by in a space ship which is in a stable circular orbit at the same altitude R .
\triangleright If Ernie were to step on a bathroom scale in his space ship, his weight would register as zero.
7. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright The same gravitational force acts on both Bert and Ernie, but Bert also experiences an additional force from the ground.
8. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright Ernie and Bert undergo the same acceleration.
9. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright If Big Bird were to fly in a circular orbit of radius 3 R, the gravitational force acting on Big Bird would be one third of the gravitational force acting on Ernie.
10. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

You are correct. Your receipt is 154-1536

Scott Pratt - PHY 231 - Introductory Physics I - Spring 2005

Two wires support a beam of length $\mathrm{L}=12$ as shown in the figure above. A box hangs from a wire which is connected a distance of 9 m from the left edge of the beam. The tension in the left support wire is 800 N and the tension in the right support wire is 1000 N . What is the mass of the beam?
DATA: $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ (in kg)

$\mathbf{1 1 . A} \bigcirc 142.7$	$\mathbf{B} \bigcirc 206.9$	$\mathbf{C} \bigcirc 300.1$	
$\mathbf{D} \bigcirc 435.1$	$\mathbf{E} \bigcirc 630.9$	$\mathbf{F} \bigcirc 914.7$	
$\mathbf{G} \bigcirc 1326.4$	$\mathbf{H} \bigcirc 1923.2$		

You are correct. Your receipt is 154-1641

The puck in the figure has a mass of 0.17 kg . Its original distance from the center of rotation is 50 cm , and the puck is moving with a speed of $1.1 \mathrm{~m} / \mathrm{s}$ in a circle. The string is pulled downward until the center of rotation has moved to $\mathrm{r}=25 \mathrm{~cm}$. The table is effectively frictionless. What is the work required to pull the puck to the new position? (in J)

$\mathbf{1 2 .} \mathbf{A} \bigcirc$	0.10	$\mathbf{B} \bigcirc$	0.13	$\mathbf{C} \bigcirc 0.16$	$\mathbf{D} \bigcirc 0.20$
$\mathbf{E} \bigcirc 0.25$	$\mathbf{F} \bigcirc$	0.31	$\mathbf{G} \bigcirc 0.39$	$\mathbf{H} \bigcirc 0.48$	

1 pt One cubic meter of a building material weighs 6.5×10^{4} N . If a column of the material collapses under its own weight if the column is taller than 1282 m , what is the compression strength (in Pa) of this material? (the maximum pressure that can be withstood by the material)

$$
\begin{array}{rlll}
\mathbf{1 3 .} \mathbf{A} \bigcirc 6.09 \times 10^{7} & \mathbf{B} \bigcirc 7.12 \times 10^{7} & \mathbf{C} \bigcirc & 8.33 \times 10^{7} \\
\mathbf{D} \bigcirc 9.75 \times 10^{7} & \mathbf{E} \bigcirc 1.14 \times 10^{8} & \mathbf{F} \bigcirc & 1.33 \times 10^{8} \\
\mathbf{G} \bigcirc 1.56 \times 10^{8} & \mathbf{H} \bigcirc 1.83 \times 10^{8} & &
\end{array}
$$

You are correct. Your receipt is 154-1641

Scott Pratt - PHY 231 - Introductory Physics I - Spring 2005
midterm3
$1 p t$ An immersion heater has a power rating of 1300 watts. It is used to heat water for coffee. How many minutes are required to heat 20.19 liters of water from room temperature $\left(20^{\circ} \mathrm{C}\right)$ to $80^{\circ} \mathrm{C}$?

$\mathbf{1 4 . A} \bigcirc$	12	$\mathbf{B} \bigcirc$	16	$\mathbf{C} \bigcirc$	21	$\mathbf{D} \bigcirc$
$\mathbf{E} \bigcirc$	37	$\mathbf{F} \bigcirc$	49	$\mathbf{G} \bigcirc$	65	$\mathbf{H} \bigcirc$

You are correct. Your receipt is 154-1641
$1 p t$ A wooden statue of Elsie the cow is held under water in a swimming pool with a force of 5500 N. If Elsie's mass is 688.7 kg , what is the density of the statue? (in $\mathrm{kg} / \mathrm{m}^{\wedge} 3$)

$\mathbf{1 5 . A} \bigcirc$	144	$\mathbf{B} \bigcirc$	181	$\mathbf{C} \bigcirc$	226
$\mathbf{D} \bigcirc$	$\mathbf{D} \bigcirc 2$				
$\mathbf{E} \bigcirc$	353	$\mathbf{F} \bigcirc$	441	$\mathbf{G} \bigcirc$	551
$\mathbf{H} \bigcirc$	689				

You are correct. Your receipt is 154-1655

1 pt A gas contains NO_{2} molecules at $18{ }^{\circ} \mathrm{C}$. What is the r.m.s. speed of the molecules in m / s ? The mass of a NO_{2} molecule is $1.53 \cdot 10^{-26} \mathrm{~kg}$.

16.A $\bigcirc 694.93$	$\mathbf{B} \bigcirc 785.28$	$\mathbf{C} \bigcirc 887.36$	
$\mathbf{D} \bigcirc 1002.72$	$\mathbf{E} \bigcirc 1133.07$	$\mathbf{F} \bigcirc 1280.37$	
$\mathbf{G} \bigcirc 1446.82$	$\mathbf{H} \bigcirc 1634.91$		

You are correct. Your receipt is 154-1524

A stainless steel orthodontic wire is applied to a tooth, as shown in the figure above. The wire has an unstretched length of 25 mm and a cross sectional area of $3 \mathrm{~mm}^{2}$. The wire is stretched 0.1 mm . Young's modulus for stainless steel is $1.8 \times 10^{11} \mathrm{~Pa}$. What is the tension in the wire? (in N)

$\mathbf{1 7 . A} \bigcirc 1325$	$\mathbf{B} \bigcirc$	1497	$\mathbf{C} \bigcirc$	1692	$\mathbf{D} \bigcirc 1912$
$\mathbf{E} \bigcirc$	2160	$\mathbf{F} \bigcirc 2441$	$\mathbf{G} \bigcirc$	2758	$\mathbf{H} \bigcirc$

You are correct. Your receipt is 154-1524
$1 p t$ A car is designed to get its energy from a rotating flywheel with a radius of 2.05 m and a mass of 525 kg . The flywheel is shaped like a pancake and can be considered as a uniform cylinder. Before a trip, the flywheel is attached to an electric motor, which brings the flywheel's rotational speed up to $4200 \mathrm{rev} / \mathrm{min}$. If the flywheel is to supply energy to the car as would a 9500 Watt motor, find the time (in minutes) the car could run before the flywheel would have to be brought back up to speed.

$\mathbf{1 8 . A} \bigcirc$	90	$\mathbf{B} \bigcirc$	102	$\mathbf{C} \bigcirc$	115	$\mathbf{D} \bigcirc$
$\mathbf{E} \bigcirc$	147	$\mathbf{F} \bigcirc$	166	$\mathbf{G} \bigcirc$	187	$\mathbf{H} \bigcirc$

You are correct. Your receipt is $154-1536$
$1 p t$ A small Ferris wheel has a moment of inertia of $1.49 \mathrm{E}+6 \mathrm{~kg}^{*} \mathrm{~m}^{2}$ and is designed to rotate once every $10 \mathrm{sec}-$ onds. Starting at rest, it undergoes an angular acceleration due to a motor that produces a torque of $1.50 \mathrm{E}+4 \mathrm{~N}^{*} \mathrm{~m}$. How many seconds will be required for the Ferris wheel to reach its designed rotational velocity?

$\mathbf{1 9 .} \mathbf{A} \bigcirc 39$	$\mathbf{B} \bigcirc 46$	$\mathbf{C} \bigcirc 53$	$\mathbf{D} \bigcirc 62$	
$\mathbf{E} \bigcirc 73$	$\mathbf{F} \bigcirc$	85	$\mathbf{G} \bigcirc 100$	$\mathbf{H} \bigcirc 117$

You are correct. Your receipt is 154-1534
$1 p t$ A solid cylinder $\left(I=M R^{2} / 2\right)$ rolls down a hill of height 31 m without slipping. What is the velocity of the cyclinder at the bottom of the hill? DATA: $\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2} \quad(i n \mathrm{~m} / \mathrm{s})$
$\mathbf{2 0 . A} \bigcirc 10.7$
B 12.6
$\mathbf{C} \bigcirc 14.7$
$\mathbf{D} \bigcirc 17.2$
E $\bigcirc 20.1$
23.5
$\mathbf{G} \bigcirc 27.6$
$\mathbf{H} \bigcirc 32.2$

You are correct. Your receipt is 154-1532

