

BS 1980, ApJ Supj	pl . 4	4, 73.				
THE UNIVERSE THE GALAX	AT I Y AN	FAINT M. ND THE P	AGNITUDES. I. MODELS FOR REDICTED STAR COUNTS			
JOHN N. BAHCALL AND RAYMOND M. SONEIRA Institute for Advanced Study, Princeton Received 1979 August 6; accepted 1980 March 19						
		CONT	ENTS			
I. Introduction	74	25-B2	 a) Uncertainties in the Luminosity Functions 	92	25-C7	
II. The Model of the Galaxy	76	25-B4	 b) Variations in the Density Distributions 	93	25-C8	
a) The Disk	76	25-B4	c) Constraints Due to Count Variations			
b) The Spheroid	78	25-B6	with Latitude and Longitude	93	25-C8	
III. Disk and Spheroid Star Distri-			d) Oblate Models	93	25-C3	
butions	80	25-B8	 e) Star Density Near the Galactic Center 	95	25-C10	
a) Basic Relations	80	25-B8	V. Some Characteristics of the Standard			
b) Observed Counts	81	25-B9	Galaxy Model	95	25-C10	
c) Calculated Versus Observed Star			 a) Star Densities and Distributions 	95	25-C10	
Distributions	82	25-B10	 Local Stellar Quantities 	95	25-C10	
 d) Determination of the Spheroid 			ii) Total Stellar Quantities	96	25-C11	
Luminosity Function from Star Counts	84	25-B12	b) Total Masses and M/L-Values	97	25-C12	
 e) Approximate Behavior of the Disk Star 			 c) The Rotation Curve 	98	25-C13	
Counts	85	25-B13	VI. The Halo	99	25-C14	
f) Approximate Behavior of the Spheroid			 a) Dynamical Effects 	99	25-C14	
Star Counts and the Spheroid Mass			b) Halo Star Counts	100	25-D1	
Distribution	85	25-B13	VII. Discussion and Applications to Space			
 g) Distributions in Distance and Absolute 			Telescope Observations	102	25–D3	
Magnitude	90	25-C5	Appendix A. Blue Band Star Densities	103	25-D4	
h) Distribution of (B-V) Colors	90	25-C5	Appendix B. Star Count Formulae and Tables	107	25-D8	
 i) Limit on the Quasar Number Density IV. Uncertainties in the Luminosity Functions 	91	25-C6	Appendix C. Color Transformations	107	25–D8	
and Spatial Distributions	92	25-C7				

[DO]

Stellar Populations							
 Abundances Kinematics Ages Pop I : Metal rich (Z ~ 0.02), disk, younger Disk field stars (up to 10-12 Gyr old) Open clusters Gas Star formation regions Pop II: Metal poor (Z ~ 0.001), halo, older Globular clusters (12-15 Gyr) Halo field stars Bulge???but includes Super Metal Rich (SMR) stated of the start o	$X,Y,Z = n$ $X \sim 0.73$ $Y \sim 0.25$ Baad	nass fractions e (1944)					
Stellar spectroscopy		[Fe/H]					
• [Fe/H], etc. \rightarrow log(N _{Fe} /N _H) – log(solar)	Thin Disk	-0.5 → +0.3					
• Iron ejected by Sne Ia after about 10 ⁹ yrs.	Thick Disk	-0.6-					
 Stellar colors HII regions 	Halo	-2.5→ -0.8					
	Bulge	-1.0→+1.0					

EQUIVALENT WIDTH

- Often, wavelength resolution and/or signal:noise too low to measure details of line profile.
- Can still measure fraction of continuum light that is absorbed
- then convert to *column density* of absorbing atoms.

$$W_{\lambda} = \int \left[1 - \frac{I_{\nu}}{I_{\nu}(0)}\right] d\lambda = \frac{\lambda^2}{c} \int \left[1 - e^{-\tau_{\nu}}\right] d\nu$$

since $d\lambda = (\lambda^2/c)d\nu$

- in units of Å
- same as width of square profile going to zero and having same W_λ as observed line.

Optical depth: $\tau_v = \int \alpha_v n \, ds$

Column density: (atoms/cm² along line of sight) $N = \int n ds$

