

Star Counts

$n_{M}(M, S, \Omega, r) d M=$ number of stars per unit volume at distance r, in solid angle Ω, in abs. Mag range $M, M+d M$, with other attribute S.

Relate to observable quantities:

- Total number of stars in abs mag range $M, M+d M$ out to distance d (Integrated star count):
[Eq. 24.3]

$$
N_{M}(M, S, \Omega, d) d M=\left[\int_{0}^{d} n_{M}(M, S, \Omega, r) \Omega r^{2} d r\right] d M
$$

- Integrated star count to limiting apparent magnitude m :

$$
\begin{array}{ll}
\text { Use } d=10^{(m-M-s+5) / 5} \text { in [24.3] to find } & a=\text { Extinction } \\
\hline
\end{array}
$$

$$
\bar{N}_{M}(M, S, \Omega, m) d M
$$

- Differential star count in apparent mag range $\mathrm{m}, \mathrm{m}+\mathrm{dm}$
[Eq. 24.4]

$$
A_{m}(M, S, \Omega, m) d M d_{m} \equiv \frac{d \bar{N}_{M}}{d m} d M d m
$$

II. The Model of the Galaxy a) The Disk
b) The Spheroid
III. Disk and Spheroid Star Distributions
a) Basic Relations
b) Observed Counts
c) Calculated Versus Observed Star Distributions
d) Determination of the Spheroid Luminosity Function from Star Counts
e) Approximate Behavior of the Disk Star Counts
f) Approximate Behavior of the Spheroid Star Counts and the Spheroid Mass Distribution
g) Distributions in Distance and Absolute Magnitude
h) Distribution of $(B-V)$ Colors
i) Limit on the Quasar Number Density
IV. Uncertainties in the Luminosity Functions and Spatial Distributions

CONTENTS

74	25-B2	a) Uncertainties in the Luminosity Functions	92	25-C7
76	25-B4	b) Variations in the Density Distributions	93	25-C8
76	25-B4	c) Constraints Due to Count Variations		
78	25-B6	with Latitude and Longitude	93	25-C8
		d) Oblate Models	93	25-C3
80	25-B8	e) Star Density Near the Galactic Center	95	25-C10
80	25-B8	V. Some Characteristics of the Standard		
81	25-B9	Galaxy Model	95	25-C10
		a) Star Densities and Distributions	95	25-C10
82	25-B10	i) Local Stellar Quantities	95	25-C10
		ii) Total Stellar Quantities	96	25-C11
84	25-B12	b) Total Masses and M/L-Values	97	25-C12
		c) The Rotation Curve	98	25-C13
85	25-B13	VI. The Halo	99	25-C14
		a) Dynamical Effects	99	25-C14
		b) Halo Star Counts	100	25-D1
85	25-B13	VII. Discussion and Applications to Space Telescope Observations	102	25-D3
90	25-C5	Appendix A. Blue Band Star Densities	103	25-D4
90	25-C5	Appendix B. Star Count Formulae and Tables	107	25-D8
91	25-C6	Appendix C. Color Transformations	107	25-D8
92	25-C7			

a) Uncertainties in the Luminosity Functions 92
b) Variations in the Density Distributions

Constraints Due to Count Va
with Latitude and Longitude
d) Oblate Models
e) Star Density Near the Galactic Center

Some Characteristics of the Standard Galaxy Model
i) Densities and Distribution Local Stellar Quantities
b) Total Masses and M / L-Values

The Rotation Curve
The Halo
a) Dynamical Effects
VII. Discussion and Applications to Space Telescope Observations
Appendix A. Blue Band Star Densities
$\begin{array}{llll}\text { Appendix B. Star Count Formulae and Tables } & 107 & \text { 25-D8 } \\ \text { Appendix C. Color Transformations } & 107 & 25-\text { D8 }\end{array}$

25-C7 25-C8

25-C8 25-C3 25-C10

25-C10
25-C10
$25-\mathrm{C} 11$
$25-\mathrm{C} 12$
25-C13
25-C14
25-D1
25-D3
25-D8

Stellar Populations

- Abundances
- Kinematics

$$
\begin{aligned}
& \hline X, Y, Z=\text { mass fractions } \\
& X \sim \mathbf{0 . 7 3} \\
& Y \sim \mathbf{0 . 2 5}
\end{aligned}
$$

- Ages
- Pop I : Metal rich ($\mathrm{Z} \sim 0.02$), disk, younger
- Disk field stars (up to 10-12 Gyr old)
- Open clusters
- Gas
- Star formation regions

Baade (1944)

- Pop II: Metal poor ($\mathrm{Z} \sim 0.001$), halo, older
- Globular clusters (12-15 Gyr)
- Halo field stars
- Bulge???but includes Super Metal Rich (SMR) stars.
- Abundance Determinations
- Stellar spectroscopy
- $[\mathrm{Fe} / \mathrm{H}]$, etc. $\rightarrow \log \left(\mathrm{N}_{\mathrm{Fe}} / \mathrm{N}_{\mathrm{H}}\right)-\log$ (solar)
- Iron ejected by Sne Ia after about 10^{9} yrs.
- Stellar colors
- HII regions

	$[\mathrm{Fe} / \mathbf{H}]$
Thin Disk	$-0.5 \rightarrow+0.3$
Thick Disk	$-0.6 \rightarrow-0.4$
Halo	$-2.5 \rightarrow-0.8$
Bulge	$-1.0 \rightarrow+1.0$

Chemical Enrichment

Chemical Enrichment Models

- Simulate what is going on in a volume of space.
- Recipes for how many of which elements created by stars of different masses.
- Include lifetimes of stars, fraction of mass returned to ISM.
- More about this in a few weeks.

Measuring abundances from absorption lines
 (see [9.5] for gory details)

- Lorentz profile
- Natural profile of stationary absorber.
- wings due to finite lifetime of excited state in QM model..
- Or to "damping" in classical oscillator model

- Voigt profile
- Lorentz profile convolved with Gaussian velocity distribution.
- Line shape increases in funny way.

EQUIVALENT WIDTH

- Often, wavelength resolution and/or signal:noise too low to measure details of line profile.
- Can still measure fraction of continuum light that is absorbed
- then convert to column density of absorbing atoms.

$$
\mathrm{W}_{\lambda}=\int\left[1-\frac{\mathrm{I}_{v}}{\mathrm{I}_{v}(0)}\right] \mathrm{d} \lambda=\frac{\lambda^{2}}{\mathrm{c}} \int\left[1-\mathrm{e}^{-\tau_{v}}\right] \mathrm{d} v
$$

$$
\text { since } \mathrm{d} \lambda=\left(\lambda^{2} / \mathrm{c}\right) \mathrm{d} \nu
$$

- in units of \AA
- same as width of square profile going to zero and having same W_{λ} as observed line.

Optical depth:

$$
\tau_{v}=\int \alpha_{v} n d s
$$

Column density:
(atoms $/ \mathrm{cm}^{2}$ along line of sight)

$$
\mathrm{N}=\int \mathrm{n} \mathrm{ds}
$$

CONVERTING W_{λ} TO COLUMN DENSITY OF ABSORBING ATOMS:

$$
\mathrm{W}_{\lambda}=\int\left[1-\frac{\mathrm{I}_{v}}{\mathrm{I}_{v}(0)}\right] \mathrm{d} \lambda=\frac{\lambda^{2}}{\mathrm{c}} \int\left[1-\mathrm{e}^{-\tau_{v}}\right] \mathrm{d} v
$$

CURVE OF GROWTH shows how W_{λ} depends on N

- For small column density:

$$
\begin{aligned}
& \mathrm{W}_{\lambda}=\lambda^{2} \tau_{v} \\
& \frac{\mathrm{~W}_{\lambda}}{\lambda} \propto \mathrm{N}_{\mathrm{j}} \mathrm{f}_{\mathrm{jk}} \lambda
\end{aligned}
$$

where j, k are lower, upper levels,

f_{jk} is oscillator strength $=$ effective number of oscillators participating in transition.
For intermediate column density: where $b=\operatorname{sqrt}\left(\mathrm{v}_{\mathrm{o}}{ }^{2}+\mathrm{v}_{\text {turbulent }}{ }^{2}\right)$:

$$
\frac{\mathrm{W}_{\lambda}}{\lambda} \propto \mathrm{b}\left[\ln \left(\frac{.015 \mathrm{Nf} \lambda}{\mathrm{~b}}\right)\right]^{1 / 2}
$$

- For large column density:

$$
\frac{\mathrm{W}_{\lambda}}{\lambda} \propto\left(\lambda^{2} \mathrm{Nf}\right)^{1 / 2}
$$

Sliding observed c.o.g. over theoretical c.o.g
in both x and $\mathrm{y} \rightarrow \mathrm{N}, \mathrm{b}$

