The reddening curve:

Shape of reddening curve depends only on dust properties:

\[\frac{A_v}{1.08 \tau_v} = 1.08 \int n ds \]

The color-color diagram:

Slope of reddening vector depends only on shape of extinction curve:

\[\Delta(U - B) = \frac{A_u - A_B}{A_B - A_V} = \frac{\int n ds}{\int n ds} \]

But distance stars slide along that slope depend also on dust column density:

\[\Delta(B - V) = A_B - A_V = (\alpha_B - \alpha_V) \int n ds \]
Star Counts

\(n_m(M, S, \Omega, r) \, dM = \text{number of stars per unit volume at distance } r, \text{ in solid angle } \Omega, \text{ in abs. Mag range } M, M+dM, \text{ with other attribute } S. \)

Relate to observable quantities:

- Total number of stars in abs mag range \(M, M+dM \) out to distance \(d \) (Integrated star count):

\[
N_m(M, S, \Omega, r) \, dM = \left[\int_0^d n_M(M, S, \Omega, r) \, \Omega \, r \, dr \right] \, dM
\]

- Integrated star count to limiting apparent magnitude \(m \):

Use \(d = 10^{m_m - M + a + 5 \log \text{sys}} \) in \[24.3\] to find

\[
\overline{N}_m(M, S, \Omega, m) \, dM
\]

- Differential star count in apparent mag range \(m, m+dm \):

\[
\frac{dN_m}{dm} \, dm = \frac{dN_m}{dm} \, dm
\]

THE UNIVERSE AT FAINT MAGNITUDES. I. MODELS FOR THE GALAXY AND THE PREDICTED STAR COUNTS

JOHN N. BAH Call AND RAYMOND M. SONIERA
Institute for Advanced Study, Princeton
Received 1979 August 6, accepted 1980 March 19

CONTENTS

I. Introduction 74 25-B2
II. The Model of the Galaxy 76 25-B4
 a) The Disk 76 25-B4
 b) The Spheroid 78 25-B6
III. Disk and Spheroid Star Distributions 80 25-B8
 a) Basic Relations 80 25-B8
 b) Observed Counts 81 25-B9
 c) Calculated Versus Observed Star Distributions 82 25-B10
 d) Determination of the Spheroid Luminosity Function from Star Counts 84 25-B12
 e) Approximate Behavior of the Disk Star Counts 85 25-B13
 f) Approximate Behavior of the Spheroid Star Counts and the Spheroid Mass Distribution 85 25-B13
 g) Distributions in Distance and Absolute Magnitude 89 25-C5
 h) Distribution of (B - F) Colors 90 25-C5
 i) Limit on the Quasar Number Density 91 25-C6
IV. Uncertainties in the Luminosity Functions and Spatial Distributions 92 25-C7

a) Uncertainties in the Luminosity Functions 92 25-C7
b) Variations in the Density Distributions 93 25-C8
c) Constraints Due to Count Variations with Latitude and Longitude 93 25-C8
d) Oblique Models 93 25-C8
e) Star Density Near the Galactic Center 95 25-C10
V. Some Characteristics of the Standard Galaxy Model 95 25-C10
 a) Star Densities and Distributions 95 25-C10
 b) Local Stellar Quantities 95 25-C10
 c) Total Stellar Quantities 96 25-C11
VI. The Halo 99 25-C14
 a) Dynamical Effects 99 25-C14
 b) Halo Star Counts 100 25-D1
VII. Discussion and Applications to Space Telescope Observations 102 25-D3
 a) Blue Band Star Densities 103 25-D4
 b) Star Count Formulations and Tables 107 25-D6
 c) Color Transformations 107 25-D6
Usually see deVaucouleurs’ $r^{1/4}$ surface brightness law:

Stellar Populations

- Abundances
- Kinematics
- Ages
- Pop I: Metal rich ($Z \sim 0.02$), disk, younger
 - Disk field stars (up to 10-12 Gyr old)
 - Open clusters
 - Gas
 - Star formation regions
- Pop II: Metal poor ($Z \sim 0.001$), halo, older
 - Globular clusters (12-15 Gyr)
 - Halo field stars
 - Bulge?? …but includes Super Metal Rich (SMR) stars.
- Abundance Determinations
 - Stellar spectroscopy
 - $[\text{Fe/H}]$, etc. $\log(N_{\text{Fe}}/N_{\text{H}}) - \log($solar$)$
 - Iron ejected by Sne Ia after about 10^8 yrs.
 - Stellar colors
 - HII regions

Table 24.1

<table>
<thead>
<tr>
<th>Disk</th>
<th>Neutral Gas</th>
<th>Thin Disk</th>
<th>Thick Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M \left(10^9 M_\odot\right)$</td>
<td>0.5</td>
<td>6</td>
<td>0.2 to 0.4</td>
</tr>
<tr>
<td>$L_B \left(10^8 L_\odot\right)$</td>
<td>—</td>
<td>1.8</td>
<td>0.02</td>
</tr>
<tr>
<td>$M/L_B (M_\odot/L_\odot)$</td>
<td>—</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Radius (kpc)</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Form $e^{a(r)}$</td>
<td>$e^{-a(r)}$</td>
<td>$e^{a(r)}$</td>
<td>$e^{-a(r)}$</td>
</tr>
<tr>
<td>Scale height (kpc)</td>
<td>5</td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>$[\text{Fe/H}]$</td>
<td>$> +0.1$</td>
<td>-0.5 to $+0.3$</td>
<td>-2.2 to -0.5</td>
</tr>
<tr>
<td>Age (Gyr)</td>
<td>$\lt 10$</td>
<td>8</td>
<td>10^9</td>
</tr>
</tbody>
</table>

Spheroids

<table>
<thead>
<tr>
<th>Central Bulge</th>
<th>Stellar Halo</th>
<th>Dark-Matter Halo</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M \left(10^9 M_\odot\right)$</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>$L_B \left(10^8 L_\odot\right)$</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>$M/L_B (M_\odot/L_\odot)$</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Radius (kpc)</td>
<td>4</td>
<td>> 100</td>
</tr>
<tr>
<td>Form</td>
<td>boxy with bar</td>
<td>$r^{-3.6}$</td>
</tr>
<tr>
<td>Scale height (kpc)</td>
<td>0.1 to 0.5</td>
<td>3</td>
</tr>
<tr>
<td>σ_v (km sec$^{-1}$)</td>
<td>55 to 130</td>
<td>95</td>
</tr>
<tr>
<td>$[\text{Fe/H}]$</td>
<td>-2 to -0.5</td>
<td>< -5.4 to -0.5</td>
</tr>
<tr>
<td>Age (Gyr)</td>
<td>< 0.2 to 10</td>
<td>11 to 13</td>
</tr>
</tbody>
</table>

Galaxy Model

$log_{10} \left[\frac{\Sigma_e}{L/e} \right] = -35.307 \left[\frac{\Sigma_e}{L/e} \right]^{1/3} - 1$

Equation

$X, Y, Z = \text{mass fractions}$

$X \sim 0.73$

$Y \sim 0.25$

Baade (1944)

<table>
<thead>
<tr>
<th>[Fe/H]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin Disk</td>
</tr>
<tr>
<td>Thick Disk</td>
</tr>
<tr>
<td>Halo</td>
</tr>
<tr>
<td>Bulge</td>
</tr>
</tbody>
</table>
Gradual processes in Interiors of Stars
- H burning (4H → He)
- α process (C, O, Ne, Mg, Si, S…)
- s process
 - slow neutron capture, relative to beta-decay timescale

Supernovae
- e process
 - nuclear statistical equilibrium
- r process
 - rapid neutron capture

B²FH (1957)
Formation of the Chemical Elements
Burbidge, Burbidge, Fowler & Hoyle.
Reviews of Modern Physics, 29, 547.

Formation of the Chemical Elements
Burbidge, Burbidge, Fowler & Hoyle.
Reviews of Modern Physics, 29, 547.

Chemical Enrichment

Chemical Enrichment Models
- Simulate what is going on in a volume of space.
- Recipes for how many of which elements created by stars of different masses.
- Include lifetimes of stars, fraction of mass returned to ISM.
- More about this in a few weeks.
Measuring abundances from absorption lines
(see [9.5] for gory details)

- Lorentz profile
 - Natural profile of stationary absorber.
 - wings due to finite lifetime of excited state in QM model.
 - Or to “damping” in classical oscillator model

- Voigt profile
 - Lorentz profile convolved with Gaussian velocity distribution.
 - Line shape increases in funny way.

EQUIVALENT WIDTH

- Often, wavelength resolution and/or signal:noise too low to measure details of line profile.
- Can still measure fraction of continuum light that is absorbed
- then convert to column density of absorbing atoms.

\[
W_\lambda = \int \left[1 - \frac{I_\nu}{I_\nu(0)} \right] \, d\lambda = \frac{\lambda^2}{c} \int \left[1 - e^{-\tau_\nu} \right] \, d\nu
\]

since \(d\lambda = (\lambda^2/c) \, d\nu \)

- in units of Å
- same as width of square profile going to zero and having same \(W_\lambda \) as observed line.

Optical depth:
\[\tau_\nu = \int \alpha_\lambda \, n \, ds \]

Column density:
\(\text{(atoms/cm}^2 \text{ along line of sight)} \)
\[N = \int n \, ds \]
CONVERTING W_λ TO COLUMN DENSITY OF ABSORBING ATOMS:

$$W_\lambda = \int \left[1 - \frac{1}{I_\lambda(0)} \right] \, d\lambda = \frac{\lambda^2}{c} \int \left[1 - e^{-\tau} \right] \, dv$$

CURVE OF GROWTH shows how W_λ depends on N

- For small column density:

 $$W_\lambda \propto \lambda^2 \tau_{\nu}$$
 $$\frac{W_\lambda}{\lambda} \propto N \int f_{jk} \lambda$$

 where j,k are lower, upper levels,
 f_{jk} is oscillator strength = effective number of oscillators participating in transition.

- For intermediate column density:

 where $b = \sqrt{v_c^2 + v_{turbulent}^2}$:

 $$\frac{W_\lambda}{\lambda} \propto \left[\ln \left(\frac{0.15 N b}{b} \right) \right]^{1/2}$$

- For large column density:

 $$\frac{W_\lambda}{\lambda} \propto (N f)^{1/2}$$

Sliding observed c.o.g. over theoretical c.o.g in both x and $y \Rightarrow N$, b
Sliding observed c.o.g. over theoretical c.o.g in both x and y \(\Rightarrow \) N, b

\[
\frac{W_\lambda}{\lambda} \propto b \left[\ln \left(\frac{0.15N\Omega_0}{b} \right) \right]^{1/2}
\]

Go directly to AST 304. Do not pass go. Do not collect $200.