The accelerating universe

- Type Ia supernovae are best standard candles.
- Least scatter in luminosity
- 2 independent groups get same answer

- Supernova Cosmology Project
 - High-z Supernova Search
 - Found acceleration
 - Not deceleration as expected.

[CO fig. 29.27]

Supernova results

Brightest cluster galaxies

[CO fig. 29.29]

Angular Diameters

- RW metric:
 \[(d\xi)^2 = (dx)^2 + R(t)^2 \left[\left(\frac{d\phi}{1-\omega t} \right)^2 + (\dot{\omega}\sin\phi d\phi)^2 \right] \]

- What is angular size of galaxy at distance \(\omega t \)?
 \[d\theta = d\omega = d\phi = 0 \]

Galaxy’s diameter is proper distance linear diameter:

\[D = \int (d\xi)^2 = R(t) \omega \]

\[\theta = \frac{D}{R(t) \omega} \]

Using \(\psi \) coordinate

Looks like Euclidean result, regardless of curvature of space.

but must use \(R(t) \omega \)
More angular diameter

\[\theta = \frac{D (1+z)^2}{d_L} \]

\[\theta = \frac{H_0 D}{c} \frac{\vartheta z^2 (1+z)^2}{\vartheta z^2 - \left(\frac{c}{H_0} \right)^2 \left(1 + z \vartheta z^2 - 1 \right)} \]

- **Surprise!**
 - Even for flat universe, \(\theta \) first decreases but then increases with increasing \(z \).
 - Two competing effects:
 - \(\theta \propto 1/distance \)
 - Universe expands under photons while they are in transit.

VLBI measurements of compact radio sources:

Authors say "consistent with" \(\theta_0 = 0.5 \), no evolution.

In practice (because of that @#$% cosmological constant)

\[\frac{c \theta}{H_0 D} = \frac{(1 + z)}{S(z)} \]

[CO Fig. 29.30]