Cosmic Microwave Background Anisotropies = structure in the CMB

Blue $=0^{\circ} \mathrm{K}$
Red $=4^{\circ} \mathrm{K}$

Blue $=2.724^{\circ} \mathrm{K}$
Red $=2.732^{\circ} \mathrm{K}$ Dipole Anistropy
~ 1 part in 300

After removing

Cosmic Microwave Background Anisotropies = structure in the CMB

Structure = snapshot of oscillations
$M<M_{J}$
$\delta \rho / \rho=\exp (-i r-i \omega t) \rightarrow$ Oscillations

Structure in the CMB

Boomerang balloon flight.
Mapped Cosmic Background Radiation with far higher angular resolution than previously available.

Launch near Mt. Erebus in Antarctica

What is measured?

Basically,
Power spectum of $\Delta T / T$
vs. $\quad l=\pi / \theta$
(think of Fourier transforming the sky in angular coordinates)

What is measured?

Basically,
Power spectum of $\Delta T / T$
vs. $\quad l=\pi / \theta$
(think of Fourier transforming the sky in angular coordinates)

Position of $1^{\text {st }}$ peak:

- Density fluctuations print through CMB fluctuations.

$$
\delta \rho / \rho=3 \delta T / T \quad[\mathrm{CO} \mathrm{30.30]}
$$

- Measures angular size of pulsations which permeated universe just before decoupling of CMB.
- Linear size of largest structure
$=($ speed of sound) x (age of universe at that time).
- $($ Linear size $) /($ Angular size $)=$ angular size distance .

$$
\begin{gathered}
\text { Sonic Horizon Distance } \\
d_{s}(t)=c t \sqrt{3} \\
=\text { linear size of perturbation } \\
\hline
\end{gathered}
$$

- Ang. Size Distance depends on geometry $=\Omega_{\text {tot }}$
- $d=\left(2 c / H_{o} \Omega_{o}\right)$ for large z.

The "Concordance" Cosmology (or Λ CDM)

- Type la Supernovae as "standard candles"
\rightarrow accelerating expansion
$\rightarrow \mathrm{q}_{\mathrm{o}}=\Omega_{\mathrm{m}} / 2-\Omega_{\Lambda}$
- CBR anisotropy $\rightarrow \Omega_{\text {total }}=\Omega_{\mathrm{m}}+\Omega_{\Lambda} \quad$ Another independent measure:
- Can solve for $\Omega_{\mathrm{m}}, \Omega_{\Lambda}$

Position \& height of first peak also depend on
$\Omega_{\mathrm{m}}, \Omega_{\mathrm{b}}, h$

Height of peak

- Larger $\Omega_{\mathrm{m}} \rightarrow$ all peaks have smaller amplitudes.
- Through change in matter/radiation density ratio during radiation-dominated phase.
- Through effect on when universe becomes matter dominated.

WMAP also measured second peak

- Due to rarefaction of an acoustic wave.
- Larger $\Omega_{\mathrm{b}} \rightarrow$ smaller amplitude of second peak.
- greater inertial mass in oscillating plasma.

Astrophysical Journal Supplement 148, pg. 1 (September 2003)
FIRST-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) ${ }^{1}$ OBSERVATIONS: PRELIMINARY MAPS AND BASIC RESULTS
C. L. Bennett, ${ }^{2}$ M. Halpern, ${ }^{3}$ G. Hinshaw, ${ }^{2}$ N. Jarosik, ${ }^{4}$ A. Kogut, ${ }^{2}$ M. Limon, ${ }^{2.5}$ S. S. Meyer, ${ }^{6}$ L. Page, ${ }^{4}$ D. N. Spergel, ${ }^{7}$ G. S. Tucker, $2.5,8$ E. Wollack, ${ }^{2}$ E. L. Wright, ${ }^{9}$ C. Barnes, ${ }^{4}$ M. R. Greason, ${ }^{10}$ R.S. Hill, ${ }^{10}$ E. Komatsu, ${ }^{7}$ M. R. Nolta, ${ }^{4}$ N. Odegard, ${ }^{10}$ H. V. Peiris, ${ }^{7}$
L. Verde, ${ }^{7}$ and J. L. Weiland ${ }^{10}$

Receited 2003 February 11: accepted 2003 May 29
Results:

- Total density:
$\Omega_{0}=\Omega_{\text {tot }}=1.02 \pm 0.02$
- Age of Universe:
$t_{0}=13.7 \pm 0.2 \mathrm{Gyr}$
- Matter density:
$\Omega_{\mathrm{m}} h^{2}=0.135+0.008 /-0.009 \rightarrow \Omega_{\mathrm{m}}=0.27$
- Baryon density:
$\Omega_{\mathrm{b}} h^{2}=0.0224 \pm 0.009 \quad \rightarrow \Omega_{\mathrm{b}}=0.044$
73\% Dark Energy, 22\% Dark Matter, 4.4\% Baryonic Matter

Flat Universe with density fluctuations $P(k) \sim k^{n}, n \sim 1$ INFLATION

Astrophysical Journal Supplement 148, pg. 233 (September 2003)
FIRST-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) ${ }^{1}$ OBSERVATIONS: INTERPRETATION OF THE TT AND TE ANGULAR POWER SPECTRUM PEAKS
L. Page, ${ }^{2}$ M. R. Nolta, ${ }^{2}$ C. Barnes, ${ }^{2}$ C.L. Bennett, ${ }^{3}$ M. Halpern, ${ }^{4}$ G. Hinshaw, ${ }^{3}$ N. Jarosik, ${ }^{2}$ A. Kogut, ${ }^{3}$ M. Limon, ${ }^{3,5}$ S. S. Meyer, ${ }^{6}$ H. V. Peiris, ${ }^{7}$ D. N. Spergel, ${ }^{7}$ G. S. Tucker, ${ }^{5,8}$
E. Wollack, ${ }^{3}$ and E. L. Wright ${ }^{9}$

Recetved2003 Febriary 11; accepted 2003 May 14

Power spectrum

 measures many things

- But still needs to be combined with other measurements.

"Best" Cosmological Parameters"				
Description	Text Symbol	Value	+ meertuinty	- uncertainty
Total density	Ω_{0}	1.02	0.02	0.02
Equation of state of quintessence"	\pm	<-0.78	95\% CL	
Dark energy density	$\Omega_{n, 0}$	0.73	0.04	0.4
Bargon density	$\Omega_{0,0 h^{2}}$	0.0224	0.0009	0.0009
Baryon density)	0.044	0.004	0.004
Baryon density (m^{-3})	$n_{\$, 0}$	0.25	0.01	0.01
Mater density	$\Omega_{m o h}{ }^{2}$	0.135	0.008	0009
Mater densily	ת-8.	0.27	0.04	0.04
Light neutrino density (m^{-3})	Ω,oh ${ }^{2}$	< 7600	$95 \% \mathrm{Cl}$.	
CMB temperature (K)	T_{0}	2.725	0002	0.002
CMB photon density ($\left.\mathrm{m}^{-3}\right)^{\text {d }}$	$n_{r, 0}$	4.104×10^{8}	0.009×10^{8}	0.009×10^{8}
Baryon-to-photon ratio	\%	6.1×10^{-10}	0.3×10^{-10}	0.2×10^{-10}
Baryon-to-matier ratio	$\Omega_{\text {b, }, ~} \Omega_{m, 0}^{-1}$	0.17	0.01	0.01
Redshift at decoupling	zacm	1089	1	1
Thickness of decospling (FWHM)	$\Delta z_{\text {dec }}$	195	2	2
Hubble constant	-	0.71	0.04	0.03
Age of universe (Gyr)	\%	13.7	0.2	0.2
Age at decoupling (kyr)	${ }_{\text {csec }}$	379	8	7
Age at reionization (Myr, 95\% CL)	4	180	220	80
Decoupling time internal (kyr)	$\Delta_{\text {doc }}$	118	94	2
Redshift of matter-energy equality	2 m	3233	194	210
Reionization optical depth	T	0.17	0.04	0.04
Redshift at reionization ($95 \% \mathrm{CL}$)	z	20	10	,
Sound harizon at decoupling (dez)	θ_{A}	0.598	0.002	0.002
Angular size distance (Gpp)	d_{A}	14.0	0.2	0.3
Acoustic sale'	ℓ_{A}	301	1	1
Sound horicon at decoupling (Mpc) ${ }^{t}$	r,	147	2	2
"CL. meass "coenidesce level"				
${ }^{-} \ell_{A}=\pi \theta_{A}^{-1}$ for θ_{A} in ratians. ${ }^{\prime} \theta_{A}=r_{,} d_{A}^{-1}$ for θ_{A} in ratiass				

