Definitions, results, etc.

$$
\begin{array}{lc}
* & r=R(t) \sigma \\
* & H=\frac{1}{R} \frac{d R}{d t} \\
\hline
\end{array}
$$

Densities:	
Matter:	$\rho_{m}=\rho_{o, n} R^{-3}$
Radiation:	$\rho_{r}=\rho_{o, r} R^{-4}$
Dark energy:	$\rho_{\mathrm{A}}=\rho_{o, \Lambda} R^{0}$
$\rho_{\mathrm{c}}(t)=\frac{3 H^{2}(t)}{8 \pi G}$	
$\Omega(t)=\frac{\rho(t)}{\rho_{c}(t)}$	
$\Omega \equiv \Omega_{m}+\Omega_{\mathrm{rel}}+\Omega_{\Lambda}$	

$$
\Omega(t)=\frac{\rho(t)}{\rho_{c}(t)}
$$

Physics

Per unit mass:
K.E. + potential E. = Total Energy
$\left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=-k c^{2}$
$\stackrel{*}{(d s)^{2}}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \omega}{\sqrt{1-k \sigma^{2}}}\right)^{2}+(\varpi d \theta)^{2}+(\omega \sin \theta d \phi)^{2}\right]$

$$
\text { * }\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho-\frac{1}{3} \Lambda c^{2}\right] R^{2}=-k c^{2}
$$

Cosmological Constant (a.k.a. Dark Energy)

$$
\frac{d^{2} R}{d t^{2}}=\left\{-\frac{4}{3} \pi G\left[\rho_{m}+\rho_{\mathrm{rel}}+\frac{3\left(P_{m}+P_{\mathrm{rel}}\right)}{c^{2}}\right]+\frac{1}{3} \Lambda c^{2}\right\} R
$$

[^0]
[^0]: * = you should be able to write these down from memory.

