

Cosmological Principle: Universe is homogeneous \& isotropic

Newtonian Cosmology

- Energy:

Kinetic + Potential $=$ Total
[29.1]
$\frac{1}{2} m v^{2}-\frac{G M_{r} m}{r}=-\frac{1}{2} m k c^{2} \varpi^{2}$
$\frac{1}{2} m v^{2}-\frac{G \frac{4}{3} \pi r^{3} \rho m}{r}=-\frac{1}{2} m k c^{2} \varpi^{2}$

$v^{2}-\frac{8}{3} \pi G \rho r^{2}=-k c^{2} \varpi^{2}$

$$
\left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=-k c^{2} \quad \begin{aligned}
& {[29.10]} \\
& \text { Friedman eq'n: }
\end{aligned}
$$

- Nested, expanding shells
- Infinite series, all same density $\rho(\mathrm{t})$

- Follow single shell, mass m
- $r(t)=($ Scale factor) $\times($ co-moving coordinate)

$$
r(t)=R(t) \varpi
$$

Define: Total Energy $=-\frac{1}{2} m k c^{2} \varpi^{2}$

Why???

Cosmological principle \rightarrow
For bound universe, each nested shell must simultaneously have $\mathrm{KE} \rightarrow 0$

$$
E=-G \frac{4}{3} \pi r^{2} \rho m \propto m \varpi^{2}
$$

Other forms of the Friedman Equation:

$$
\begin{aligned}
& \text { Kinetic } \left.+ \text { Potential }=\text { Total } \quad \text { P } \quad \text { Define: } \quad \text { (}{ }_{0}\right)=1 \\
& \left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=-k c^{2} \\
& \left(\frac{d R}{d t}\right)^{2}-\frac{8 \pi G \rho_{o}}{3 R}=-k c^{2} \\
& \text { - Conservation of mass: } \\
& \mathrm{R}^{3}(\mathrm{t}) \rho(\mathrm{t})=\mathrm{R}^{3}\left(\mathrm{t}_{\mathrm{o}}\right) \rho\left(\mathrm{t}_{\mathrm{o}}\right)=\rho_{\mathrm{o}} \\
& \text { - Hubble's law: } \\
& \text { But also: } \quad r(t)=R(t) \varpi \\
& \frac{d r(t)}{d t}=v(t)=\frac{d R(t)}{d t} \varpi \\
& H(t)=\frac{v(t)}{r(t)}=\frac{\frac{d R(t)}{d t} \varpi}{R(t) \varpi}=\frac{1}{R} \frac{d R(t)}{d t}
\end{aligned}
$$

The Critical Density

$$
\begin{aligned}
& E=-\frac{1}{2} m k c^{2} \varpi^{2} \\
& \begin{aligned}
\text { Kinetic }+ \text { Potential } & =\text { Total } \\
\left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right) R^{2} & =-k c^{2} \\
\left(\frac{d 2.10]}{d t}\right)^{2}-\frac{8 \pi G \rho_{0}}{3 R} & =-k c^{2}
\end{aligned} \\
& \text { Energy per unit mass }=-\frac{1}{2} k c^{2} \varpi^{2} \\
& k>0 \rightarrow \text { negative } \mathrm{E} \text {, shells will collapse back } \\
& k=0 \rightarrow \mathrm{E}=0 \text {, each shell has exactly escape } \\
& \text { velocity. } \\
& k<0 \rightarrow \text { positive } \mathrm{E} \text {, shells expand forever } \\
& \text { Critical density } \\
& \begin{aligned}
k=0 \Rightarrow H^{2} & =\frac{8}{3} \pi G \rho \\
\rho_{\mathrm{c}}(t) & =\frac{3 H^{2}(t)}{8 \pi G}
\end{aligned} \\
& \rho_{\mathrm{c}, \mathrm{o}}=1.88 \times 10^{-26} \mathrm{~h}^{2} \mathrm{~kg} \mathrm{~m}^{-3} \\
& \Omega(t)=\frac{\rho(t)}{\rho_{c}(t)} \quad \Omega_{o}=\frac{\rho_{o}}{\rho_{c, o}} \\
& \left(H^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=-k c^{2} \\
& \text { [29.9] }
\end{aligned}
$$

The Critical Density

$\begin{aligned} \text { Kinetic }+ \text { Potential } & =\text { Total } \\ \left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right) R^{2} & =-k c^{2} \\ \left(\frac{d R}{d t}\right)^{2}-\frac{8 \pi G \rho_{o}}{3 R} & =-k c^{2} \end{aligned}$	$\begin{aligned} & \qquad E=-\frac{1}{2} m k c^{2} \varpi^{2} \\ & \text { Energy per unit mass }=-\frac{1}{2} k c^{2} \varpi^{2} \\ & k>0 \rightarrow \text { negative } \mathrm{E} \text {, shells will collapse back } \\ & k=0 \rightarrow \mathrm{E}=0, \text { each shell has exactly escape } \\ & \quad \text { velocity. } \end{aligned}$
$\begin{aligned} \left(\frac{d R}{d t}\right)^{2} & =\frac{8 \pi G \rho_{c, \mathrm{C}}}{3 R} \\ \int_{0}^{R} \sqrt{R^{\prime}} d R^{\prime} & =\sqrt{\frac{8 \pi G \rho_{c, 0}}{3}} \int_{0}^{t} d t^{\prime} \\ R_{\text {flat }} & =\left(6 \pi G \rho_{c, 0}\right)^{1 / 3} t^{2 / 3} \\ & =\left(\frac{3}{2}\right)^{2 / 3}\left(\frac{t}{t_{H}}\right)^{2 / 3} \end{aligned}$	$k<0 \rightarrow$ positive E , shells expand forever $\begin{aligned} & \text { Critical density } \\ & k=0 \Rightarrow H^{2}=\frac{8}{3} \pi G \rho \\ & \rho_{\mathrm{c}}(t)=\frac{3 H^{2}(t)}{8 \pi G} \\ & \rho_{\mathrm{c}, \mathrm{o}}=1.88 \times 10^{-26} h^{2} \mathrm{~kg} \mathrm{~m}^{-3} \\ & \Omega(t)=\frac{8 \pi G \rho_{\mathrm{c}, 0}(t)}{3}=H_{o}^{2}=\frac{1}{t_{H}^{2}} \\ & \rho_{c}(t) \\ & \hline[29.15] \\ & \hline[27.15] \\ & \Omega_{o}=\frac{\rho_{o}}{\rho_{c, o}} \\ & \begin{array}{ll} {[29.118]} \\ {[29.19]} \end{array} \end{aligned}$

A better way to plot R vs. t

$$
\begin{aligned}
& \left(\frac{d R}{d t}\right)^{2}-\frac{8 \pi G \rho_{\mathrm{o}}}{3 R}=-k c^{2}
\end{aligned}
$$

For flat universe:

$$
\begin{aligned}
& \frac{t_{1}}{t_{2}}=\left(\frac{R_{1}}{R_{2}}\right)^{3 / 2} \\
& \frac{t_{o}}{t_{H}}=\frac{2}{3} \quad \text { since } R_{o}=1
\end{aligned}
$$

