Tully-Fisher relation

- virial theorem: $v^2 \sim GM/r$
- assume $L \propto M \implies L-v$ correlation expected
- for spiral galaxies, $L-v$ correlation easily measured using H I 21cm profiles, optical/IR photometry.
- must apply $\sin i$ correction
- infrared Tully-Fisher: IR measurements minimize scatter due to absorption \implies tighter correlation

E galaxy fundamental plane

- another $L-v$ correlation due to $M-L$ correlation.
- Faber-Jackson relation is first approximation
- fundamental plane gives best precision, but $D_n - \sigma_0$ is used more often.
- $\sigma_0 \Rightarrow D_n$
- angular size = D_n/distance
- 15% scatter in resulting distance to any one galaxy.
Surface brightness fluctuations

- same galaxy seen at any distance will have same surface brightness.
 \[N = \text{number of stars in angular area } \theta^2 \]
 \[n = \text{number of stars per unit absolute area} \]

Surface brightness \(\Sigma = \frac{1}{4\pi} \log \left(\frac{N}{\theta^2} \right) = \frac{L_n \theta^2}{4\pi} \)

- But standard deviation of number of stars in \(\theta^2 \) area scales as \(D \).

- So surface brightness distributions look smoother for larger \(D \).

Type Ia Supernovae
Type Ia Supernovae

- Type I - no H in spectra
 - Type Ia – strong Si, S, Ti, Ca Mg lines
 - Type Ib/c – strong He, Na, Ca

- Type II - strong H lines

- Types II, Ib, Ic: core collapse & explosion of M > 10M☉ star.

- Type Ia: thermonuclear detonation of massive (~1.4M☉) white dwarfs.
 - Great uncertainty about details.

Spectra taken 1 week after maximum.
Type Ia Supernovae

• Neighbor star dumps too much mass onto a white dwarf.
• Increased density \rightarrow runaway heating through C + C burning
 • Overwhelms $\gamma \rightarrow \nu + \nu$ cooling
 • Heating rate faster than dynamical timescale
 • White dwarf interior cannot peacefully respond to pressure increase.
• Deflagration
 • leading to detonation?

Type Ia Supernovae as “standard candles”.

• Always happens when mass goes just past limit for heating-cooling balance.
 \rightarrow Supernova always has same luminosity.
• Get distance from $\text{Flux} = \frac{L}{4\pi r^2}$
SN Ia as Standard Candles

Light output powered by radioactive decay:

\[^{56}\text{Ni} \rightarrow ^{56}\text{Co} \rightarrow ^{56}\text{Fe} \]

Amount of Ni determines both luminosity and opacity.

- So luminosity and fading timescale are correlated.

The Cosmic Distance Ladder and the HST Key Project
HST Key Project on Extragalactic Distance Scale

- Measured Cepheids in 18 spirals
 - D < 25 Mpc, v < 1800 km/s
 - also used 7 more galaxies from other sources
- Distances to Cepheids relative to LMC distance
- Used these to calibrate secondary distance indicators
 - Tully-Fisher
 - Fundamental plane
 - Surface brightness fluctuations
 - Type Ia supernovae
- Secondary distance indicators ==> coverage to 10^4 km/s
- Goal is to measure H_0
 \[
 H_0 = 71 +/- 6 \text{ km/s/Mpc}
 \]

<table>
<thead>
<tr>
<th>Indicator</th>
<th>TF</th>
<th>FP</th>
<th>SBF</th>
<th>SN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>71</td>
<td>78</td>
<td>69</td>
<td>68</td>
</tr>
<tr>
<td>+/- (random)</td>
<td>+/- 4</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>+/- (systematic)</td>
<td>+/- 4</td>
<td>10</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

- Uncertainties:
 - Correction for large scale flows
 - Distance to LMC.
 - Taken to be 50 kpc +/- 6.5%