Many-Electron Atoms

Thornton and Rex, Ch. 8

In principle, can now solve Sch. Eqn for any atom.

In practice, -> Complicated!

Goal--

To explain properties of elements from principles of quantum theory (without exact solutions)

- Elements distinguished by nuclear charge Z (= number of electrons)
- To first approx., each electron moves in electric field of nucleus + remaining electrons:

electron state:
$$(n, \ell, m_{\ell}, m_{s})$$

shell subshell

n labels energy, but no simple formula.
 ℓ subshells no longer completely degenerate.

- Principles for filling electron states:
 - 1) Always fill lowest energy state first.
 - 2) No two electrons can have same quantum numbers $(n, \ell, m_{\ell}, m_{s})$.

Pauli Exclusion Principle

No two electrons can occupy the same quantum state.

Building up atomic structure of atoms

Hydrogen

+1/2

Helium

0 + 1/2

-1/2

Helium has a closed shell.

For Lithium, now add n=2 electron, but $\ell = 0$ or $\ell = 1$?

Smaller ℓ always has lower energy.

Lithium

+1/2

-1/2

+1/2

	<u>n</u>	<u>ℓ</u>	$\underline{m}_{\underline{\ell}}$	$\underline{m}_{\mathtt{s}}$
Hydrogen	1	0	0	+1/2
Helium	1	0	0	-1/2
Lithium	2	0	0	+1/2
Beryllium	2	0	0	-1/2
Boron	2	1	-1	+1/2
Carbon	2	1	0	+1/2
Nitrogen	2	1	+1	+1/2
Oxygen	2	1	-1	-1/2 Y
Flourine	2	1	0	-1/2
Neon	2	1	+1	+1/2 +1/2 -1/2 -1/2 -1/2 +1/2
Sodium	3	0	0	· •/ •
Magnesium	3	0	0	-1/2 tsp
Aluminum	3	1	-1	+1/2
Silicon	3	1	0	+1/2
Phosporus	3	1	+1	+1/2
Sulfur	3	1	-1	-1/2
Chlorine	3	1	0	-1/2
Argon	3	1	+1	-1/2
Potassium	4	0	0	+1/2

Chemical properties of elements

Electrons in outermost, largest n orbits are most weakly bound. They determine the chemical properties of the elements. Elements with similar electron structure have similar properties.

Inert or Noble Gases
 Closed p subshell (s for He).
 He (1s²), Ne (2s²2p6), Ar (3s²3p6)

Alkalis

Have single electron electron outside closed shell.

Li (2s1), Na (3s1), K (4s1)

· Halogens

Are one electron short of a closed shell. F $(2s^22p^5)$, Cl $(3s^23p^5)$

Total Angular Momentum

Consider a 1-electron atom (or with just 1 electron outside closed shell).

It has Orbital Angular momentum L and Spin Angular momentum 5.

These can be combined to give Total Angular momentum $\vec{J} = \vec{L} + \vec{5}$.

J is quantized with

$$J = \sqrt{j(j+1)}$$
 h

and

$$J_z = m_j \hbar$$

where $j = \ell \pm s$

or
$$j = \ell \pm 1/2$$
 (since $s = 1/2$)

j will be half-integral (1/2, 3/2, 5/2, ...) m_j will also be half-integral, ranging from -j to j.

Example: $\ell = 1$, s = 1/2

$$m_{\ell} = (1,0,-1)$$
 $m_{s} = (-1/2,+1/2)$

3 2 = 6 states

Can combine into

$$j = 3/2 = 1 + 1/2$$

 $m_j = (-3/2, -1/2, +1/2, +3/2)$ (4 states)

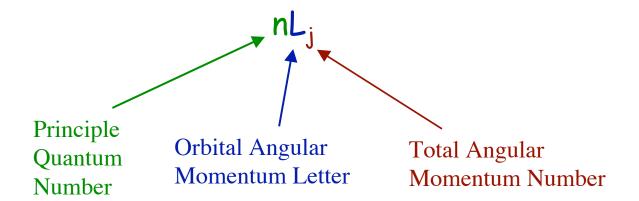
or

$$j = 1/2 = 1 - 1/2$$

 $m_i = (-1/2,+1/2)$ (2 states)

Total number of j-states is 6 = 4 + 2.

Spectroscopic notation



Examples: $2S_{1/2}$ $3P_{3/2}$ etc.

Spin-Orbit Coupling

- Recall, coupling of spin to a magnetic field shifts the energy $(V_B = -\vec{\mu}_s \cdot \vec{B})$.
- Motion of electron produces an "internal" magnetic field.

So there is an additional contribution to the energy:

$$V_{SL} = -\mu_{s} \cdot \overrightarrow{B}_{int}$$
Proportional to -S

Proportional to L

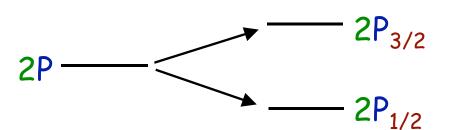
$$V_{SL} \propto \vec{S} \cdot \vec{L}$$

This is the Spin-Orbit Coupling:

$$V_{SL} \propto \vec{S} \cdot \vec{L}$$

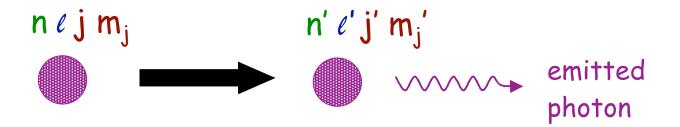
Now states with definite energy do not have unique L and S quantum numbers (m_e, m_s) . We must use J quantum numbers (j, m_i) .

States with $j = \ell - 1/2$ have slightly less energy than states with $j = \ell + 1/2$.



(States with different m_j are still degenerate for each j.)

Selection Rules



Allowed transitions:

• lifetimes $\tau \sim 10^{-9}$ sec

$$\Delta n = anything$$
, $\Delta \ell = \pm 1$,

$$\Delta j = 0, \pm 1, \qquad \Delta m_j = 0, \pm 1$$

Forbidden transitions:

lifetimes much longer

Ex.
$$2s \rightarrow 1s$$
, $\tau \sim 1/7$ sec

Many-Electron Atoms

A careful analysis involving \vec{L} and \vec{S} in multi-electron atoms is very complicated.

Hund's Rules

(Empirical rules for filling a subshell, while minimizing the energy)

- 1) The total Spin should be maximized (without violating Pauli Exclusion Principle).
- 2) Without violating Rule 1, the Orbital Angular momentum should also be maximized.

Handwaving explanation:

Electrons repel each other, so we want them as far from each other as possible.

- 1) If spins of two electrons are aligned (for maximum \vec{s}), then Pauli Exclusion Principle says they must have different \vec{L} orbits. They will tend to be farther apart.
- 2) If the L orbits are aligned (although with different magnitudes), then the electrons will travel around the nucleus in the same direction, so they don't pass each other as often.

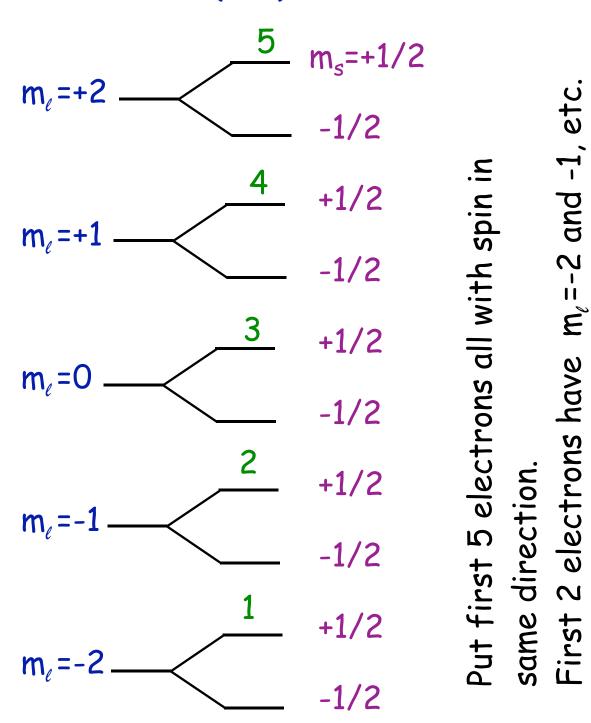
Example:

A d subshell ($\ell = 2$) can contain 10 electrons.

$$m_{\ell}=+2$$
 $m_{s}=+1/2$
 $-1/2$
 $m_{\ell}=+1$
 $-1/2$
 $m_{\ell}=0$
 $-1/2$
 $m_{\ell}=-1$
 $-1/2$
 $m_{\ell}=-1$
 $-1/2$
 $m_{\ell}=-2$
 $-1/2$

Example:

A d subshell ($\ell = 2$) can contain 10 electrons.



Many-Electron Atoms

For many-electron atoms there is now orbit-orbit and spin-spin interactions, in addition to spin-orbit interactions.

Consider simplest case of 2 electrons with \vec{L}_1 , \vec{S}_1 and \vec{L}_2 , \vec{S}_2 .

Only "good" quantum number is associated with total angular momentum

$$\vec{J} = \vec{L}_1 + \vec{L}_2 + \vec{S}_1 + \vec{S}_2$$
.

(By "good", I mean states with definite energy have definite j and m_{j} .)

How can we describe atom to best understand energy levels?

LS, or Russell-Saunders, Coupling

For most atoms the <u>spin-orbit</u> coupling is relatively weak. Then it makes sense to add the angular momentum in steps:

First,
$$\vec{L} = \vec{L}_1 + \vec{L}_2$$

 $\vec{S} = \vec{S}_1 + \vec{S}_2$

Then
$$\vec{J} = \vec{L} + \vec{S}$$

For 2 electrons the Total Spin Quantum Number S is = 0 (spins anti-parallel) or = 1 (spins parallel).

The Total Orbital Angular Momentum Quantum Number L is an integer in the range between $|\ell_1 - \ell_2|$ and $|\ell_1 + \ell_2|$.

The Total Angular Momentum Quantum Number J is an integer in the range between |L-S| and |L+S|.

Note that for S=0, there is $\underline{1}$ value of J, given by J=L. This state is called a <u>Singlet</u>.

For S=1, there are 3 values of J, given by J=L-1, J=L, J=L+1. These states are called a Triplet.

In general, the <u>multiplicity</u> of the states is given by (25+1).

The Spectroscopic notation is

$$n^{(25+1)}L_{J}$$

Example:

2 electrons, one in 4p, other in 4d.

I.e., n=4,
$$\ell_1 = 1$$
, $s_1 = 1/2$
 $\ell_2 = 2$, $s_2 = 1/2$

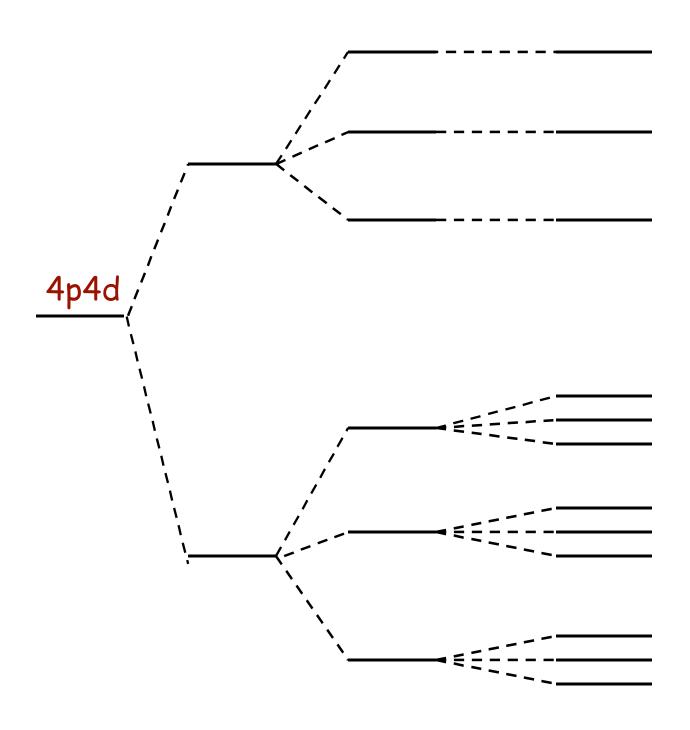
Possible values of 5:

Possible values of L:

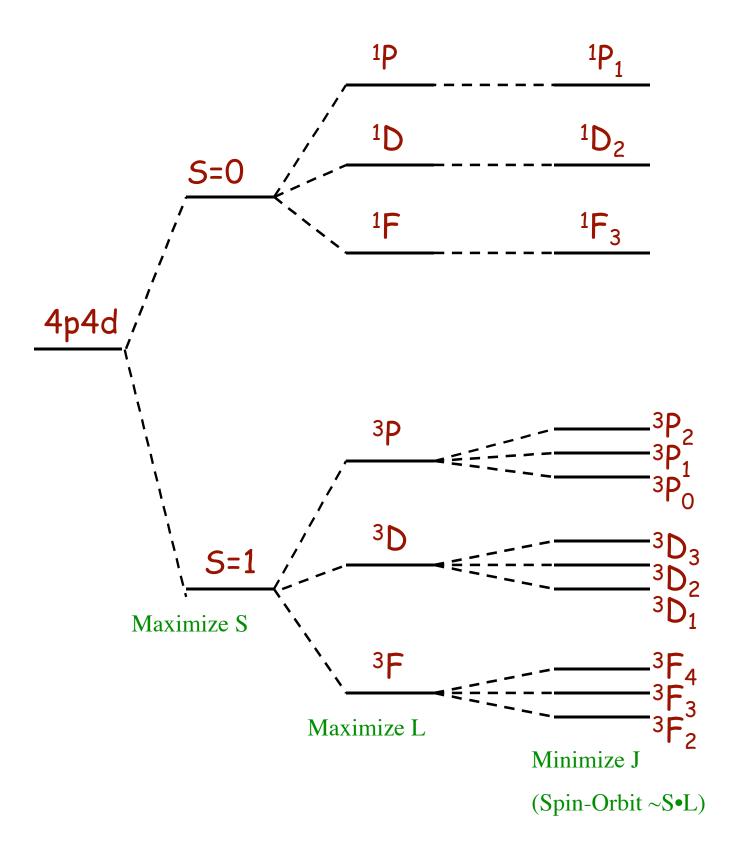
$$L=1, 2, or 3$$

Possible values of J:

Use Hund's rules to order the energies.



Use Hund's rules to order the energies.



Example:

Helium 152

$$\ell_1 = 0$$
, $s_1 = 1/2$
 $\ell_2 = 0$, $s_2 = 1/2$

Possible values of S=0,1

Possible values of L=0

Possible values of J=0,1

States: ¹S₀, (³S₁)

not allowed by Pauli Exclusion (requires both electrons all same QN's)

If one electron is excited to 2s, so the state is 1s2s, then

both ${}^{1}S_{0}$, ${}^{3}S_{1}$ are allowed.

jj Coupling

For high-Z elements the <u>spin-orbit</u> coupling is large for each electron. Now add the angular momentum:

First,
$$\vec{J}_1 = \vec{L}_1 + \vec{S}_1$$

 $\vec{J}_2 = \vec{L}_2 + \vec{S}_2$

Then
$$\vec{J} = \vec{J}_1 + \vec{J}_2$$

Anomalous Zeeman Effect

Recall, energy shift in external magnetic field:

$$V_B = -\overrightarrow{\mu} \cdot \overrightarrow{B}$$

The magnetic moment gets both orbital and spin contributions:

$$\vec{\mu} = \vec{\mu}_L + \vec{\mu}_S = \frac{-e}{2m} \left[\vec{L} + 2 \vec{S} \right]$$

If S=0, this is simple. It is just the Normal Zeeman effect. Energy levels split according to m_{ℓ} values:

$$V_B = m_\ell \mu_B B$$

But..... most atoms are not "Normal".

If both S and L are nonzero, the spin-orbit coupling requires us to use J-states. Projecting $\vec{\mu}$ onto \vec{J} gives

$$V_{B} = \frac{e}{2m} g \vec{J} \cdot \vec{B}$$
$$= \mu_{B} g m_{J} B$$

where the projection factor (called the Landé g factor) is

$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$

This is the Anomalous Zeeman Effect.