Entropy and Probability (A statistical view)

Entropy ~ a measure of the disorder of a system.

A state of high order = low probability A state of low order = high probability

In an irreversible process, the universe moves from a state of low probability to a state of higher probability.

We will illustrate the concepts by considering the free expansion of a gas from volume V_{i} to volume V_{f}.

The gas always expands to fill the available space. It never spontaneously compresses itself back into the original volume.

First, two definitions:
Microstate: a description of a system that specifies the properties (position and/or momentum, etc.) of each individual particle.

Macrostate: a more generalized description of the system; it can be in terms of macroscopic quantities, such as P and V, or it can be in terms of the number of particles whose properties fall within a given range.

In general, each macrostate contains a large number of microstates.

An example: Imagine a gas consisting of just 2 molecules. We want to consider whether the molecules are in the left or right half of the container.

There are 3 macrostates: both molecules on the left, both on the right, and one on each side.
There are 4 microstates:
LL, RR, LR, RL.
How about 3 molecules? Now we have: LLL, (LLR, LRL, RLL), (LRR, RLR, RRL), RRR
i.e. 8 microstates, 4 macrostates

How about 4 molecules? Now there are 16 microstates and 5 macrostates
(all L) $(3 L, 1 R)(2 L, 2 R)(1 L, 3 R)($ all $R)$

6

14
number of microstates

In general:

$$
\begin{aligned}
& \frac{N}{1} \quad \frac{W}{2} \quad \frac{M}{2} \\
& 243 \\
& 384 \\
& 4165 \\
& \begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array} \\
& 532 \\
& 6 \\
& \begin{array}{lllllll}
1 & 6 & 15 & 20 & 15 & 6 & 1
\end{array} \\
& 6 \quad 647 \\
& \begin{array}{llllllll}
1 & 7 & 21 & 35 & 35 & 21 & 7 & 1
\end{array} \\
& 18285670562881 \\
& 7128 \quad 8
\end{aligned}
$$

This table was generated using the formula for \# of permutations for picking n items from N total:
$W_{N, n}=\frac{N!}{N!(N-n)!}$
"multiplicity"

Fundamental Assumption of Statistical Mechanics: All microstates are equally probable.

Thus, we can calculate the likelihood of finding a given arrangement of molecules in the container.
E.g. for 10 molecules:

Conclusion: Events such as the spontaneous compression of a gas (or spontaneous conduction of heat from a cold body to a hot body) are not impossible, but they are so improbable that they never occur.

We can relate the \# of microstates W of a system to its entropy S by considering the probability of a gas to spontaneously compress itself into a smaller volume.

If the original volume is V_{i}, then the probability of finding N molecules in a smaller volume V_{f} is

Probability $=W_{f} / W_{i}=\left(V_{f} / V_{i}\right)^{N}$

- $\ln \left(W_{f} / W_{i}\right)=N \ln \left(V_{f} / V_{i}\right)=n N_{A} \ln \left(V_{f} / V_{i}\right)$

We have seen for a free expansion that
$\square S=n R \ln \left(V_{f} / V_{i}\right)$,
So
$\square S=\left(R / N_{A}\right) \ln \left(W_{f} / W_{i}\right)=k \ln \left(W_{f} / W_{i}\right)$
or

$$
S_{f}-S_{i}=k \ln \left(W_{f}\right)-k \ln \left(W_{i}\right)
$$

Thus, we arrive at an equation, first deduced by Ludwig Boltzmann, relating the entropy of a system to the number of microstates:

$$
S=k \ln (W)
$$

He was so pleased with this relation that he asked for it to be engraved on his tombstone.

