Relativity

1905 - Albert Einstein:

- Brownian motion
- atoms.
- Photoelectric effect.
- Quantum Theory
- "On the Electrodynamics of Moving Bodies"

The Special Theory of Relativity

The Luminiferous Ether

Hypothesis: EM waves (light) travel through some medium - The Ether

Speed of light: $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ w.r.t fixed ether.

The earth moves at $v=3 \times 10^{4} \mathrm{~m} / \mathrm{s}$ w.r.t fixed ether.
\square Speed of light w.r.t earth should depend on direction.

The Michelson-Morley Experiment

An interferometer

The interference fringes should shift.

But no effect was observed!

What was wrong?

The Lorentz-Fitzgerald Contraction

Suppose that the ether squashes any object moving through it?

To counteract the change in light speed, we need:

$$
d^{\prime}=d \sqrt{1-v^{2} / c^{2}}
$$

Galilean Transformations.

$$
\begin{aligned}
& t^{\prime}=t \\
& z^{\prime}=z \\
& y^{\prime}=y \\
& x^{\prime}=x-v t
\end{aligned}
$$

In frame K, two charges at rest. Force is given by Coulomb's law.

In moving frame K^{\prime}, two charges are moving. Since moving charges are currents, Force is Coulomb + Magnetism.

Principle of relativity:
"The laws of nature are the same in all inertial reference frames"

Something is wrong!

- Maxwell's Equations?
- The Principle of Relativity?
- Gallilean Transformations?

Einstein decided
\square Galilean Transformations are the problem.

Einstein's two postulates:

1. The principle of relativity is correct.

The laws of physics are the same in all inertial reference frames.
2. The speed of light in vacuum is the same in all inertial reference frames
($c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ regardless of motion of the source or observer).

The second postulate seems to violate everyday common sense!

Einstein says: observer measures the light as traveling at speed c, not 1.5c.

Gedanken Experiments

A light clock:

It ticks every $\square \dagger=2 \mathrm{w} / \mathrm{c}$ seconds.
One can synchronize ordinary clocks with it.

Time Dilation

$O_{G}:$ Observer on Ground

O_{T} : Observer on Truck
O_{T} 's clock as seen from the ground:

$$
c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

$(c t / 2)^{2}-(v t / 2)^{2}=w^{2}$

Time for one round trip of light, as seen from the ground:

$$
t=(2 w / c) / \sqrt{1-v^{2} / c^{2}}
$$

For $v=0.6 c, t=(2 w / c) \times 1.25$

All of O_{\top} 's processes slow down compared to O_{G} as seen by O_{G}.

Similarly,
All of O_{G} 's processes slow down compared to O_{T} as seen by O_{T}.

Length Contraction

$O_{G}:$ Observer on Ground

O_{\top} : Observer on Truck
Device on truck makes mark on track each time clock ticks.

As seen from ground:
Distance between marks

$$
\begin{aligned}
& =(\text { time between ticks }) \times v \\
& =\left[(2 \mathrm{w} / \mathrm{c}) / \sqrt{1-v^{2} / c^{2}}\right] \mathrm{v}
\end{aligned}
$$

As seen from truck:
Distance between marks

$$
\begin{aligned}
& =(\text { time between ticks }) \times v \\
& =(2 \mathrm{w} / \mathrm{c}) \mathrm{v}
\end{aligned}
$$

(To the person on the truck the time between ticks is ($2 \mathrm{w} / \mathrm{c}$).)
(Distance measured on truck)

$$
=\sqrt{1-v^{2} / c^{2}}
$$

x (distance measured on ground)

As seen from a moving frame, rest distances contract.
(L-F contraction)

Simultaneity

Events occur at a well defined position and a time (x, y, z, t).

But events that are simultaneous (same t) in one inertial frame are not necessarily simultaneous in another frame.

The light from the two flashes reach O_{G} at the same time. He sees them as simultaneous.

O_{T} passes O_{G} just as the lights flash.

But light from B reaches O_{T} first. Since both light beams started the same distance from her, and both travel at speed c, she concludes that B must have flashed before A.

Lorentz Transformations

- Flashbulb at origin just as both axes are coincident.
- Wavefronts in both systems must be spherical:

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}=c^{2} \dagger^{2} \quad \text { and } \\
& x^{\prime 2}+y^{\prime 2}+z^{\prime 2}=c^{2} \dagger^{\prime 2}
\end{aligned}
$$

- Inconsistent with a Galilean transformation
- Also cannot assume $\dagger=\dagger^{\prime}$.

Assuming:

- Principle of relativity
- linear transformation (x, y, z, t)

$$
\rightarrow\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)
$$

Lorentz Transformations (section 2.4)

Time Dilation (again)

Proper time: time T_{0} measured between two events at the same position in an inertial frame.

$O_{G}{ }^{\prime}$ s clock: $T_{0}=t_{2}-t_{1}, \quad\left(x_{2}-x_{1}=0\right)$
O_{T} 's clock: $T^{\prime}=\dagger^{\prime}{ }_{2}-\dagger^{\prime}{ }_{1}$
$t^{\prime}{ }_{2}-t_{1}^{\prime}=\square\left(t_{2}-t_{1}-v / c^{2}\left(x_{2}-x_{1}\right)\right)$

$$
T^{\prime}=\square T_{0}>T_{0}
$$

Clocks, as seen by observers moving at a relative velocity, run slow.

Length Contraction (again)

Proper length: distance L_{0} between points that are at rest in an inertial frame.

O_{T} on truck measures its length to be $L_{0}=x_{2}^{\prime}-x_{1}^{\prime}$. This is its proper length. O_{G} on ground measures its length to be $L=x_{2}-x_{1}$, using a meter stick at rest ($t_{2}=t_{1}$).

Then

$$
\begin{aligned}
L_{0}=x_{2}^{\prime}-x_{1}^{\prime} & =\square\left(x_{2}-x_{1}-v\left(t_{2}-t_{1}\right)\right) \\
& =\square L
\end{aligned}
$$

O_{G} measures $L=L_{0} / \square<L_{0}$.
Truck appears contracted to O_{G}.

An application

Muon decays with the formula:

$$
N=N_{0} e^{-t / \square}
$$

$\mathrm{N}_{0}=$ number of muons at time $t=0$.
$\mathrm{N}=$ number of muons at time t seconds
later.
$\square=2.19 \times 10^{-6}$ seconds is mean lifetime of muon.

Suppose 1000 muons start at top of mountain $\mathrm{d}=2000 \mathrm{~m}$ high and travel at speed $v=0.98 c$ towards the ground. What is the expected number that reach earth?

Time to reach earth:
$t=d / v=2000 \mathrm{~m} /\left(0.98 \times 3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
$=6.8 \times 10^{-6} \mathrm{~s}$
Expect $N=1000 e^{-6.8 / 2.19}=45$ muons.
But experimentally we see 540 muons! What did we do wrong?

Time dilation: The moving muon's internal clock runs slow. It has only gone through
$t^{\prime}=6.8 \times 10^{-6} \sqrt{1-0.98^{2}} \mathrm{~s}$
$=1.35 \times 10^{-6} \mathrm{~s}$
So $N=1000 e^{-1.35 / 2.19}=540$ muons survive.

Alternate explanation: From muon's viewpoint, the mountain is contracted. Get same result.

Addition of velocities

Galilean formula ($u=u^{\prime}+v$) is wrong.
Consider object, velocity u' as seen in frame of O_{T} who is on a truck moving with velocity v w.r.t the ground.

What is velocity u of the object as measured by O_{G} on the ground?

$\longrightarrow \mathrm{V}$

Recall $u=\square x / \square t, u^{\prime}=\square x^{\prime} / \square t^{\prime}$.
Inverse Lorentz transformation formulae:

$$
\begin{aligned}
& \square x=\square\left(\square x^{\prime}+v \square t^{\prime}\right) \\
& \square t=\square\left(\square t^{\prime}+v \square x^{\prime} / c^{2}\right)
\end{aligned}
$$

$$
u=\frac{\square x}{\square t}=\frac{\square\left(\square x^{\prime}+v \square t^{\prime}\right)}{\square\left(\square t^{\prime}+v \square x^{\prime} / c^{2}\right)}
$$

$$
u=\frac{u^{\prime}+v}{1+v u^{\prime} / c^{2}}
$$

For u ' and v much less than c :

$$
u \approx u^{\prime}+v
$$

Velocities in y and z directions are also modified (due to $\dagger^{\prime} \neq \dagger$, see section 2.6)

Examples:
$E \rightarrow M \rightarrow W M$

Rocket $\mathrm{v}=0.5 \mathrm{c}$

Light pulse
Observer

Observer sees light move at

$$
u=\frac{0.5 c+c}{1+(0.5 c)(c) / c^{2}}=c
$$

Light moves at $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in all frames.

Rocket
Projectile

$\mathrm{v}=0.8 \mathrm{c}$
$u^{\prime}=0.5 c$
Observer
Observer sees projectile move at

$$
u=\frac{0.5 c+0.8 c}{1+(0.5)(0.8)}=0.93 c
$$

Massive objects always move at speeds < c.

The Twin Paradox

Suppose there are two twins, Henry and Albert. Henry takes a rocket ship, going near the speed of light, to a nearby star, and then returns. Albert stays at home on earth.

Albert says that Henry's clocks are running slow, so that when Henry returns he will still be young, whereas Albert is an old man.

But Henry could just as well say that Albert is the one moving rapidly, so Albert should be younger after Henry returns!

Who is right?

The first scenario is the correct one.

The situation is not symmetric, because the rocket has to decelerate, turn around and accelerate again to return to earth. Thus, Henry is not in an inertial frame throughout the trip. He does return younger than Albert.

Relativistic Doppler Effect

Light source and observer approach each other with relative velocity, v . Light is emitted at frequency \square_{0}.

\square

Observer sees light at a higher frequency:

$$
\square=\frac{\sqrt{1+\square}}{\sqrt{1-\square}} \square_{0} \quad \text { with } \square=v / c
$$

- If source is receding, the formula still holds but now \square is negative.

We know that the universe is expanding, because light from distance galaxies is red-shifted, indicating motion away from us.

Relativistic Momentum

Requirement: momentum is conserved in all inertial frames.
Assume: $\vec{p}=m \vec{v}$.
Elastic scattering in c-o-m frame:

Transform to frame of A :

$p_{x}: \quad 0+m\left(\frac{-2 u}{1+u^{2} / c^{2}}\right)$

Relativistic momentum:

$$
\vec{p}=\square m \vec{v}=\frac{m \vec{v}}{\sqrt{1-v^{2} / c^{2}}}
$$

Relativistic Kinetic Energy:

$$
\begin{aligned}
K & =(\square-1) m c^{2} \\
& =\left(\frac{1}{\sqrt{1-v^{2} / c^{2}}}-1\right) m c^{2}
\end{aligned}
$$

For small velocities, $v / c \ll 1$:

$$
\begin{aligned}
K & =\left(1+1 / 2(v / c)^{2}+\ldots-1\right) m c^{2} \\
& \approx 1 / 2 m v^{2}
\end{aligned}
$$

For large velocities $v \rightarrow c$:

$$
K \longrightarrow
$$

Massive objects always travel at speeds less than c.

Relativistic Energy

According to Einstein, even a mass at rest has energy:

$$
E_{0}=m c^{2} \quad \text { (rest energy) }
$$

Thus, the total energy of a moving object is

$$
\begin{aligned}
E & =K+E_{0} \\
& =(\square-1) m c^{2}+m c^{2} \\
& =\square m c^{2}
\end{aligned}
$$

It is straightforward to show:

$$
E^{2}-p^{2} c^{2}=m^{2} c^{4}
$$

For a massless particle (e.g. a photon):

$$
E=|\vec{p}| c
$$

In general
$v=\frac{|\vec{p}| c^{2}}{E}=\frac{\square m v c^{2}}{\square m c^{2}}$
For a massless particle this gives
$v=c$

Massless particles travel at the speed of light c.

