PHY481 Fall 2007 Practice Exam

1) [15 pts] Consider a vector function $\mathbf{F}(\mathbf{x}) = (2xy + 3y^2)\hat{\mathbf{j}} + (4yz^2)\hat{\mathbf{k}}$. Check Stokes theorem, $\oint_S (\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} \, dA = \oint_C \mathbf{F} \cdot d\ell$, over the square surface defined by the closed path shown in the figure.

- a) [5 pts] The points $\mathbf{x}_1 = (x_0, 0, 0)$; $\mathbf{x}_2 = (0, y_0, 0)$; $\mathbf{x}_3 = (0, 0, z_0)$ define the planar surface as shown. Use a vector cross product to find the unit normal $\hat{\mathbf{n}}$ to the planar surface. Hint: the vectors must lie in the plane.
- b) [5 pts] Determine the equation z = f(x, y) satisfied by all points $\mathbf{x} = (x, y, z)$, that lie in the plane. Hint: given a point \mathbf{x}' in the plane, the vectors $(\mathbf{x} \mathbf{x}')$ lie in the plane, and $\hat{\mathbf{n}} \cdot (\mathbf{x} \mathbf{x}') = 0$ for all \mathbf{x} .
- c) [5 pts] A point charge q is located at the origin. Without an explicit calculation use Gauss's law to determine the electric flux through the surface shown.
- 3) [15 pts] Gauss's law states that integral of the electric flux through a closed surface is Q/ε_0 , where Q is the enclosed charge.
 - a) [5 pts] For Gauss's law to hold, must the electric field in the neighborhood of the surface be determined only by the charge *Q*? Explain !
 - b) [10 pts] A region of space has a constant electric field $\mathbf{E} = E\hat{\mathbf{k}}$. An infinite sheet with surface charge density σ , is then *inserted* in the xy plane. What is the electric field vector above and below the sheet? Determine the total flux through a Gaussian surface cutting through the sheet (draw this situation). Compare this flux to the predictions of Gauss's law.

Z

1

х

- 4) [15 pts] Consider a thin ring of charge with a surface charge density σ and height 2*a* centered on the xy plane.
 - a) [10 pts] Determine the electric field on the positive z axis.
- b) [5 pts] For z >> a, R, show that the field approaches the field of a point charge with a value equal to the total charge on the ring. (Beware: this may be time consuming)

(Use approximations $(1+x)^n \approx 1 + nx$ and $1/(1+x) \approx 1 - x$, for $x \ll 1$.)

- 5) [15 pts] Use the Levi-Chivita tensor and the tensor product reduction to prove the identity $\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A}(\nabla \cdot \mathbf{B}) \mathbf{B}(\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla)\mathbf{A} (\mathbf{A} \cdot \nabla)\mathbf{B}$. (If you have difficulty with this proof, instead prove $\mathbf{A} \times \mathbf{B} \times \mathbf{C} = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) + \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$ to receive up to 8 pts.)
- 6) [15 pts] A point dipole $\mathbf{p} = p_0 \hat{\mathbf{k}}$ has the electric potential $V(r, \theta) = \frac{p_0 \cos \theta}{4\pi\varepsilon_0 r^2}$.
 - a) [10 pts] In spherical coordinates determine the electric field $\mathbf{E}(\mathbf{x})$.
 - b) [5 pts] Calculate the divergence of the field, $\nabla \cdot \mathbf{E}(\mathbf{x})$ (or $-\nabla^2 V$). Explain why it has the expected value.
- 7. [15 pts] Consider the following problems involving the Dirac delta function.
- a) [10 pts] Evaluate the following integrals.

(i)
$$\int_{2}^{6} dx (3x^{2} - 2x - 1)\delta(x - 3)$$

(ii)
$$\int_{\text{all space}} d^{3}x (r^{2} + \mathbf{r} \cdot \mathbf{r}_{0} + r_{0}^{2})\delta^{3}(\mathbf{r} - \mathbf{r}_{0}), \text{ where } \mathbf{r}_{0} \text{ is a constant vector}$$

b) [5 pts] Use the Dirac delta function to define the charge density of an electric dipole, consisting of a point charge -q at the origin and a point charge +q at \mathbf{x}_0 .