1) [15 pts] Consider a vector function $\mathbf{F}(\mathbf{x})=\left(2 x y+3 y^{2}\right) \hat{\mathbf{j}}+\left(4 y z^{2}\right) \hat{\mathbf{k}}$. Check Stokes theorem, $\oint_{S}(\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} d A=\oint_{C} \mathbf{F} \cdot d \ell$, over the square surface defined by the closed path shown in the figure.

2) [15 pts] To apply Gauss's law, $\oint_{S} \mathbf{E} \cdot d \mathbf{A}=q_{\text {encl }} / \varepsilon_{0}$, normal vectors at various points on a Gaussian surface are often needed.
a) [5 pts] The points $\mathbf{x}_{1}=\left(x_{0}, 0,0\right) ; \quad \mathbf{x}_{2}=\left(0, y_{0}, 0\right) ; \quad \mathbf{x}_{3}=\left(0,0, z_{0}\right)$ define the planar surface as shown. Use a vector cross product to find the unit normal $\hat{\mathbf{n}}$ to the planar surface. Hint: the vectors must lie in the plane.
b) [5 pts] Determine the equation $z=f(x, y)$ satisfied by all points $\mathbf{x}=(x, y, z)$, that lie in the plane. Hint: given a point \mathbf{x}^{\prime} in the plane, the vectors $\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$ lie in the plane, and $\hat{\mathbf{n}} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=0$ for all \mathbf{x}.
c) [5 pts] A point charge q is located at the origin. Without an explicit calculation use Gauss's law to determine the electric flux through the surface shown.
3) [15 pts] Gauss's law states that integral of the electric flux through a closed surface is Q / ε_{0}, where Q is the enclosed charge.
a) [5 pts] For Gauss's law to hold, must the electric field in the neighborhood of the surface be determined only by the charge Q ? Explain!
b) $[10 \mathrm{pts}]$ A region of space has a constant electric field $\mathbf{E}=E \hat{\mathbf{k}}$. An infinite sheet with surface charge density σ, is then inserted in the xy plane. What is the electric field vector above and below the sheet? Determine the total flux through a Gaussian surface cutting through the sheet (draw this situation). Compare this flux to the predictions of Gauss's law.
4) [15 pts$]$ Consider a thin ring of charge with a surface charge density σ and height $2 a$ centered on the xy plane.
a) [10 pts] Determine the electric field on the positive z axis.
b) $[5 \mathrm{pts}]$ For $z \gg a, R$, show that the field approaches the field of a point charge with a value equal to the total charge on the ring. (Beware: this may be time consuming)
(Use approximations $(1+x)^{n} \approx 1+n x$ and $1 /(1+x) \approx 1-x$, for $x \ll 1$.)
5) $[15 \mathrm{pts}]$ Use the Levi-Chivita tensor and the tensor product reduction to prove the identity $\nabla \times(\mathbf{A} \times \mathbf{B})=\mathbf{A}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{A})+(\mathbf{B} \cdot \nabla) \mathbf{A}-(\mathbf{A} \cdot \nabla) \mathbf{B}$.
(If you have difficulty with this proof, instead prove $\mathbf{A} \times \mathbf{B} \times \mathbf{C}=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})+\mathbf{C}(\mathbf{A} \cdot \mathbf{B})$ to receive up to 8 pts.)
6) $[15 \mathrm{pts}]$ A point dipole $\mathbf{p}=p_{0} \hat{\mathbf{k}}$ has the electric potential $V(r, \theta)=\frac{p_{0} \cos \theta}{4 \pi \varepsilon_{0} r^{2}}$.
a) $[10 \mathrm{pts}]$ In spherical coordinates determine the electric field $\mathbf{E}(\mathbf{x})$.
b) $[5 \mathrm{pts}]$ Calculate the divergence of the field, $\nabla \cdot \mathbf{E}(\mathbf{x})$ (or $-\nabla^{2} V$). Explain why it has the expected value.
7. [15 pts] Consider the following problems involving the Dirac delta function.
a) [10 pts] Evaluate the following integrals.
(i) $\int_{2}^{6} d x\left(3 x^{2}-2 x-1\right) \delta(x-3)$
(ii) $\int_{\text {all space }} d^{3} x\left(r^{2}+\mathbf{r} \cdot \mathbf{r}_{0}+r_{0}^{2}\right) \delta^{3}\left(\mathbf{r}-\mathbf{r}_{0}\right)$, where \mathbf{r}_{0} is a constant vector
b) [5 pts] Use the Dirac delta function to define the charge density of an electric dipole, consisting of a point charge $-q$ at the origin and a point charge $+q$ at \mathbf{x}_{0}.
