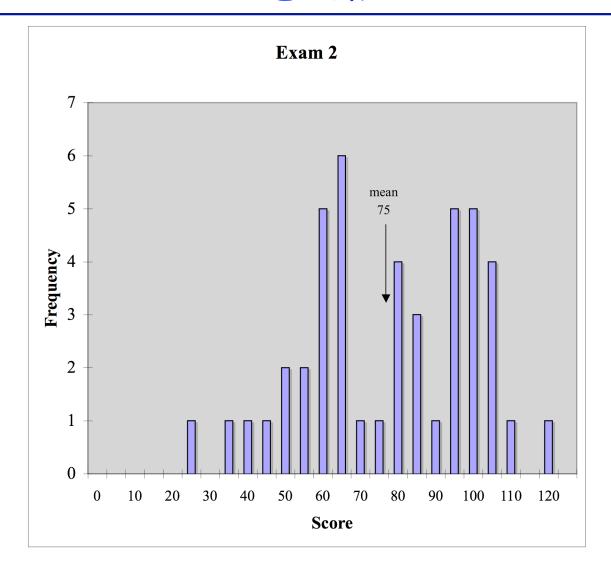
PHY481: Electromagnetism

Constant currents
Conductors & insulators

Exam 2



Current and current densities

No charge can accumulate in a uniform wire carrying current. Charge going in = charge going out.

$$\rho_c(\mathbf{x})$$
 = charge density

$$\frac{\partial \rho_c}{\partial t} = 0$$

Beware: ρ is also used for resistivity of a material.

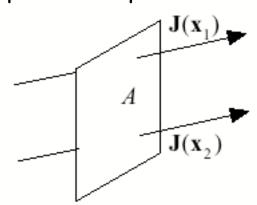
Volume current density

$$\mathbf{J}(\mathbf{x}) = n_V q \mathbf{v}(\mathbf{x}) \quad (3 \text{ D})$$

Current density J is position dependent

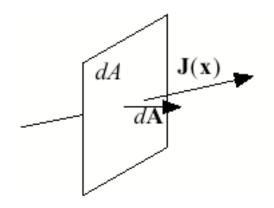
Local current density J for a differential area element

$$\frac{\mathbf{K}(\mathbf{x}) = n_S q \mathbf{v}(\mathbf{x})}{\text{Surface current } \mathbf{K}}$$



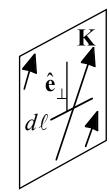
Current is charge through A per unit time

$$I = dQ/dt$$
 (1 D)



Current through dA

$$dI = \mathbf{J}(\mathbf{x}) \cdot d\mathbf{A} \quad (1 \text{ D})$$



Current crossing $d\ell$

$$dI = \mathbf{K} \cdot \hat{\mathbf{e}}_{\perp} d\ell \quad (1 \text{ D})$$

Continuity equation -- conservation of charge

Continuity equation:

$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho_c}{\partial t}$$

Remember that ρ_c and ${\bf J}$ are functions of 3D position

$$\rho_c(\mathbf{x}) \& \mathbf{J}(\mathbf{x})$$

Integrate over volume V, and use Gauss's theorem

$$\int_{V} \nabla \cdot \mathbf{J} \, d^{3}x = -\int_{V} \frac{\partial \rho_{c}}{\partial t} \, d^{3}x$$
Rate of change of charge inside of V

Rate of change of

Continuity equation, integral form.

Flux of **J** through surface S

$$\int_{S} \mathbf{J} \cdot d\mathbf{A} = -\frac{d}{dt} \int_{V} \rho_{c} d^{3}x$$
 Rate of change of charge inside of V

Boundary condition on **J** at a surface

Discontinuity in normal Discontinuity in normal component of $\bf J$ at a surface $J_{2n} - J_{1n} = -\frac{\partial \sigma_c}{\partial t}$ Rate of change of surface charge density

$$J_{2n} - J_{1n} = -\frac{\partial \sigma_c}{\partial t}$$

$$\frac{\partial \rho_c}{\partial t} = 0 \text{ and } \frac{\partial \sigma_c}{\partial t} = 0 \text{ with constant currents}$$

Reminiscent of
$$E_{2n} - E_{1n} = \frac{\sigma_c}{\varepsilon_0}$$

Good conductors & poor conductors (resistors)

Macroscopic

Microscopic - Local forms of Ohm's law

Resistance

Resistivity ρ

Conductivity σ

$$I = \frac{1}{R}V$$

$$I = \frac{1}{R}V$$

$$J(\mathbf{x}) = \frac{1}{\rho_R} \mathbf{E}(\mathbf{x})$$

$$\sigma_R = \frac{1}{\rho_R}$$

$$\mathbf{J}(\mathbf{x}) = \boldsymbol{\sigma}_R \; \mathbf{E}(\mathbf{x})$$

$$\sigma_R = \frac{1}{\rho_R}$$

 ρ and σ are an intrinsic property of a material

"Wire" with area A, and resistivity ρ_R With constant resistivity ρ_R

$$R = \int dR = \frac{1}{A} \int_{0}^{z} \rho_{R}(z')dz'$$

$$R = \frac{\rho_R}{A} z$$

Resistance linear in z (length) and ρ .

What is still true about E?

 $\mathbf{E} = -\nabla V$ field $\langle -- \rangle$ potential relationship, e.g., $\mathbf{E} = E_z \hat{\mathbf{k}}$; $V = -E_z z$

$$\mathbf{E} = E_z \,\hat{\mathbf{k}}; \quad V = -E_z \, z$$

 $\nabla \times \mathbf{E} = 0$ violation requires changing magnetic fields

In good conductors, e.g., Cu, Ag, etc., the charge density is negligible

In resistors carrying constant current

$$\nabla \cdot \mathbf{E} = \frac{\rho_c}{\varepsilon_0} \Rightarrow \frac{\rho_{free}}{\varepsilon}$$

Charge density doesn't change $\frac{\partial \rho_c}{\partial t} = 0$ but $\rho_c \neq 0$

$$\frac{\partial \rho_c}{\partial t} = 0$$
 but

 $\nabla \cdot \mathbf{E} = \frac{\rho_c}{\varepsilon_0} \Rightarrow \frac{\rho_{free}}{\varepsilon}$ must specify "free charge density" and permittivity, ε .

Free charge and resistivity

What is free charge, ρ_{free} ?

Though currents have moving charge, resistance will allow charge to accumulate locally.

 $ho_{\it free} = 0$ with *constant* resistivity (unifor No free charge in resistor volume Free charge, $\sigma_{\it free}$ on up- & down-stream surfaces

$$I_z \longrightarrow \begin{array}{c} d\rho_R/dz = 0 \text{ resistivity} \\ \text{constant} \\ I_z \longrightarrow \begin{array}{c} \text{Cu} \\ \rho_R \approx 0 \end{array} \longrightarrow \begin{array}{c} \text{Cu} \\ \rho_R \approx 0 \end{array}$$

$$\int \rho_C d^3 x = 0 \quad \text{no net charge}$$

$$\rho_{free} = \frac{\varepsilon I}{A} \left(\frac{d\rho_R}{dz} \right)$$
 with resistivity changing

Free charge in resistor volume, and free charge on up- & down-stream surfaces

$$I_z \longrightarrow \frac{d\rho_R/dz > 0}{\rho_R \approx 0} \text{ resistivity increasing}$$

$$I_z \longrightarrow \frac{\text{Cu}}{\rho_R \approx 0} \stackrel{\text{Cu}}{\rightleftharpoons} -\frac{\text{Cu}}{-} \stackrel{\text{Cu}}{\rightleftharpoons} \rho_R \approx 0$$

$$\int \rho_C d^3 x = 0 \quad \text{no net charge}$$

Voltage and charge decay

Two conductors embedded in a resistive matrix Charge each with a battery and disconnect.

Relate Total current I to material

Total current:
$$I = \int_{S} \mathbf{J}(\mathbf{x}) \cdot \hat{\mathbf{n}} dA$$
 $\mathbf{J}(x) = \sigma_{R} \mathbf{E}(\mathbf{x})$

$$\mathbf{J}(x) = \boldsymbol{\sigma}_R \mathbf{E}(\mathbf{x})$$

Gauss's Law:
$$I = \sigma_R \int_S \mathbf{E}(\mathbf{x}) \cdot \hat{\mathbf{n}} \, dAI = \sigma_R \int_V \nabla \cdot \mathbf{E}(\mathbf{x}) d^3 x \qquad \nabla \cdot \mathbf{E}(\mathbf{x}) = \frac{\rho(\mathbf{x})}{\varepsilon}$$

$$I = \frac{\sigma_R}{\varepsilon} \int_V \rho(\mathbf{x}) d^3 x = \frac{\sigma_R}{\varepsilon} Q \qquad Q = CV \qquad \frac{V}{R} = \frac{\sigma_R}{\varepsilon} CV \qquad \longrightarrow \qquad RC = \frac{\varepsilon}{\sigma_R}$$

$$Q = CV$$

$$\nabla \cdot \mathbf{E}(\mathbf{x}) = \frac{\rho(\mathbf{x})}{\varepsilon}$$

$$\frac{V}{R} = \frac{\sigma_R}{\varepsilon} CV$$

$$RC = \frac{\varepsilon}{\sigma_R}$$

constants with dimensions of time

$$\frac{dQ(t)}{dt} = \frac{\sigma_R}{\varepsilon} Q(t) = \frac{1}{RC} Q(t)$$

$$Q_1(t) = Q_0 e^{-t/RC}$$

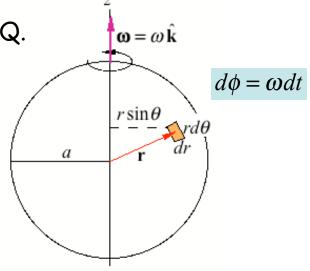
 $Q_1(t) = Q_0 e^{-t/RC}$ Exponential as of the charge Exponential decay

HW-7

7.3 Solid sphere radius a, uniformly distributed Q.

Constant angular velocity. Calculate $\mathbf{J}(\mathbf{x})$.

$$\int_{S} \mathbf{J}(r) \cdot \hat{\mathbf{n}} \, dA = \frac{d}{dt} \int_{V} \rho_{c} d^{3} x$$



7.11 Find surface charge density at discontinuity in resistivity.

$$E_{2n} - E_{1n} = \frac{\sigma_c}{\varepsilon_0}$$

$$L/2 \longrightarrow L/2 \longrightarrow$$

$$J = J\hat{\mathbf{k}} \qquad \rho_{R1} \qquad \stackrel{\leftarrow}{\downarrow} \qquad \rho_{R2} \qquad \rho_{R2} > \rho_{R1}$$

$$J = J\hat{\mathbf{k}} \qquad \rho_{R1} \qquad \stackrel{\leftarrow}{\downarrow} \qquad \rho_{R2} \qquad \rho_{R2} < \rho_{R1}$$

HW-7

7.9 Cylinders length L, resistive media between radius a and 3a. What is the resistance? What is the charge density on the interface at 2a?

$$V_1(r) = A \ln r + B$$
 $V_1(a) = V_0$

$$V_2(r) = C \ln r + D$$
 $V_2(3a) = 0$

General solutions Boundary Conditions

$$V_1(a) = V_0$$

$$V_2(3a) = 0$$

$$V_1(2a) = V_2(2a)$$

$$J_1(2a) = J_2(2a)$$

