- Exam will cover *everything* that was in the lectures, not just what is in this study guide.
- The lectures covered:
- Units, etc used in astronomy
- History of astronomy from ancient Greeks until mid-1800's.
 - How we went from geocentric (Earth at center) models to heliocentric (Sun at center) models of Solar System.
- The nature of science.
- How things move
 - Kepler's 3 laws
 - Newton's 3 laws + law of gravity + using them to derive Kepler's laws.
 - Conservation of energy, angular momentum
 - Know what "conservation" of these quantities means.
 - be able to use the concept to reason your way through what will happen in simple situations such as those described in class.
 - Escape velocity & orbits

The lectures covered (continued):

- What causes accelerations? The four fundamental forces:
 - gravity, electromagnetic, strong nuclear, weak nuclear
- Electromagnetism & Light
 - The electromagnetic wave
 - The speed of light -
 - what did Einstein do to fix things up?
 - Dual wave/particle nature of light
 - What is meant by this?
 - How do we know it is true?
 - The electromagnetic spectrum
 - Different names for light at different wavelengths
 - Measuring the spectrum of an object

The lectures covered (continued):

Emission & absorption lines

energy to

atom.

exactly

10.2 eV

electron

to jump

to level 2

allows

electron

cannot

accept

11 eV

• What are they?

[Fig. 5.8/5.9]

electron

cannot

accept

5 eV

ionization

level

level 4

level 3

level 2

level 1

(ground state)

- How do we interpret them in terms of orbits in the Bohr atom and energy level diagrams?
- What can they tell us about the gas that does the absorbing or emitting?

The lectures covered (continued):

- Continuous radiation

 - What is it due to?
 How can it tell us the temperature of temperature of the temperature of the emitting object?
- Under what circumstances do we see emission lines, absorption lines, continuous radiation?
- Doppler Effect
 - What is it caused by?
 - What is a redshift? What is a blueshift?

Some "laws" to know

Kepler's laws:

- 1. Each planet moves around orbit in ellipse, with sun at one focus.
- 2. The straight line joining the planet and the sun sweeps out equal areas of space in equal amounts of time.
- 3. $P^2 = a^3$
 - P = period of orbit, in years
 - a = semi-major axis of orbit, in au.

Newton's Laws of Motion:

- 1. In the absence of a net (overall) force acting upon it, an object moves with constant velocity.
- 2. Force = mass × acceleration
- 3. For any force, there is an equal and opposite reaction force.

...and Newton's law of Gravity:

 $\mathsf{F} = \frac{\mathsf{Gm}_1\mathsf{m}_2}{\mathsf{m}_2^2}$

Some formulae to know

(and to know how to use at the level of the homework): *Motion:*

Kepler's 3rd law: $P^2 = a^3$ Newton's 2nd Law: F = ma $\mathsf{F} = \frac{\mathsf{Gm}_1\mathsf{m}_2}{\mathsf{r}^2}$ Newton's law of Gravity: Kinetic energy $= \frac{1}{2} \text{ mv}^2$ Angular momentum = mvr c = speed of light.Light: h = Planck's constant Frequency f, wavelength λ : $f = c/\lambda$ $E = hf = hc/\lambda$ Energy of photon Thermal spectrum λ_{max} = const. / T

Thermal emission per unit surface area = const.× T⁴

Review Sessions

- Two choices:
- Monday: 7PM
 - Wilson Hall auditorium (Room C-102)
- or Tuesday: 6PM
 - Chemistry 138

Print & bring Study Guide

- on course web site
- reachable through Angel)

Midterm 1

- 30 multiple choice questions.
 Sample questions on course web site.
- Closed book, closed notes.
- No calculators or cell phones.
- A few problems like the homework problems.
 We will give you a table of numbers raised to various
 - powers and roots that you might need.
- Exam must be completed within the class period.
- Sit in assigned rows.