Midterm 3 Review Sessions

Two choices:

- Monday: 7PM
- or Tuesday: 6PM
- Both in

Plant & Soil Science (PSS) room A101 (corner of Wilson & Bogue)

Print & bring Study Guide

• on course web site (reachable through Angel)

Computing the structure of the sun

We can write equations expressing the following ideas:

- The Sun is a gas.
- The Sun is neither contracting nor expanding.
- Each point inside the Sun stays at a fixed temperature.
- How energy generation rate depends on density, temperature, composition.
- How energy is carried outwards.

For every point in the Sun, we can then compute:

- temperature
- pressure
- density
- composition
- energy generation
- energy transport mechanism

Energy source: 4 ¹H → ⁴He

• Photosphere

- Deepest layer from which light directly escapes into space.
- Low density and pressure (10⁻⁴, 0.1 x Earth's surface values)
- But *hot* (5800° K)
- Granules (in photosphere)
 - Tops of convection currents.
- Chromosphere
 - Transparent gas layer, reaches 2000-3000 km above photosphere.
 - T ~5,000-10,000° K
 - Photosphere = point we can no longer see through chromosphere.
- Corona
 - $T > 1,000,000^{\circ} K$
 - Very low density: 10⁻¹⁰ bar.
 - Heated by magnetic energy.
 - Several x diameter of photosphere.

30 40 50 6 kilometers

Magnetic Fields Control Much of Sun's Surface Activity

The Sun's magnetic field

• Due to "winding up" of Sun's magnetic field.

Here's what we observe about stars.

Predicted paths of stars on HR diagram

[12.12, 12.14] in 4th edition.

Star clusters are snapshots of stellar evolution

- All stars in a given cluster formed at ~ same time.
- But with a wide range in masses.
- *Main sequence turnoff* = stars just finishing main sequence evolution.

To see how it all works, look at:

http://www.mhhe.com/physsci/astronomy/applets/Hr/frame.html http://www.pa.msu.edu/courses/isp205/sec-1/hr.mpg

Stellar Evolution

Here: Evolution through			There: Final state.	
$M_{\text{max}} > 2M \qquad \text{Nuclear burning all}$		Mass loss:	$M_{\rm final}$ > 3 M_{\odot}	Black hole.
the way to	iron.		1.4 < M _{final} <	Neutron
$M_{initial} < 2M_{\odot}$ Nuclear b	urning	• Planetary	3M _☉	star.
shuts off a	fter He-	nebulae	${ m M_{final}}$ < 1.4 ${ m M_{\odot}}$	White
flash.		 Supernovae 		dwarf.

Telescopes

- Radio telescopes
 - Why use big arrays of them?
- Telescopes in space
 - Why spend all the \$\$\$ to put them up there?
- NASA's Great Observatories
 - Hubble Space Telescope
 - Visible, ultraviolet
 - Chandra Space Telescope
 - X-rays
 - Spitzer Space Telescope
 - Infrared

Planets around Other Stars

- Over 200 known
- Usually detected through their effect on motion of the parent star.
- Also through transits, gravitational lensing.
- Possible sites of life
 - ... in our Solar System?
 - Mars
 - Europa
 - Other moons

...elsewhere?

- SETI
- The Drake Equation: $N = R f_p n_e f_l f_c L$