Name：

1 pt Which is Newton＇s Second Law？（All are correct equa－ tions；use these equations for reference．）

1． $\mathbf{A} \bigcirc \Omega=\mathrm{PE} / \mathrm{KE}$
$\mathbf{B} \bigcirc \mathrm{F}=\mathrm{ma}$
$\mathbf{C} \bigcirc \mathrm{v}=\mathrm{HD}$
$\mathbf{D} \bigcirc \mathrm{KE}=3 / 2 \mathrm{kT}$ ，where T is temperature．
$\mathbf{E} \bigcirc \mathrm{P}^{2}=\mathrm{R}^{3}$ ，where P is in years and R is in AU ．
$\mathbf{F} \bigcirc \mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{v}^{2}$ ，where v is the speed
$\mathbf{G} \bigcirc \mathrm{v}^{2}>2 \mathrm{GM}_{\text {planet }} / \mathrm{R}_{\text {planet }}$ ，where v is the speed．
$\mathbf{H} \bigcirc \mathrm{R}=2.5 \mathrm{R}_{\text {planet }}$ ．
$\mathbf{I} \bigcirc \mathrm{M}=\mathrm{R}^{3} / \mathrm{P}^{2}$ ，where where P is in years and R is in AU．
$\mathbf{J} \bigcirc \mathrm{F}=\mathrm{GMm} / \mathrm{R}^{2}$

1 pt Suppose it is full moon，as seen from Earth．How would Earth appear to someone on the Moon at this time？

2． $\mathbf{A} \bigcirc$ Half the side of Earth facing the Moon is bright， and half of it is dark．
B \bigcirc The illumination of Earth does not change，as viewed from the Moon．
$\mathbf{C} \bigcirc$ The side of Earth facing the Moon is completely dark．
$\mathbf{D} \bigcirc$ The side of Earth facing the moon is completely bright．

1 pt The mass of Jupiter can be calculated from observa－ tions by

3． $\mathbf{A} \bigcirc$ measuring the orbital period of a moon and the dis－ tance between it and Jupiter．
$\mathbf{B} \bigcirc$ measuring the orbital speed of one of Jupiter＇s moons．
C〇knowing the Sun＇s mass and measuring how Jupiter＇s speed changes during its elliptical orbit around the Sun．
$\mathbf{D} \bigcirc$ knowing the Sun＇s mass and measuring the average distance of Jupiter from the Sun．
$\mathbf{E} \bigcirc$ measuring the orbital period and distance of Jupiter＇s orbit around the Sun．

1 pt Suppose you drop a 10 －pound weight and a 5 －pound weight on the Moon，both from the same height at the same time．What will happen？

4． $\mathbf{A} \bigcirc$ The 5 －pound weight will hit the ground before the 10－pound weight．
$\mathbf{B} \bigcirc$ Both weights will float freely，since everything is weightless on the Moon．
$\mathbf{C} \bigcirc$ Both will hit the ground at the same time．
D The 10－pound weight will hit the ground before the 5 －pound weight．

$1 p t$
Suppose the Sun were to suddenly shrink in size but

5．A \bigcirc The Sun would rotate faster than it does now．
$\mathbf{B} \bigcirc$ The Sun＇s angular size in our sky would stay the same．
$\mathbf{C} \bigcirc$ The Sun＇s rate of rotation would slow．
$\mathbf{D} \bigcirc$ This could never happen，because it is impossible for an object to shrink in size without an outside torque．

1 pt
mass，

6． $\mathbf{A} \bigcirc$ Earth will gradually spiral in toward the black hole． $\mathbf{B} \bigcirc$ Earth will quickly get sucked into the black hole．
$\mathbf{C} \bigcirc$ Earth＇s orbit will remain the same．
$\mathbf{D} \bigcirc$ Earth will be thrown out into interstellar space．

1 pt
How long does it take Earth to complete one orbit

7． $\mathbf{A} \bigcirc$ three months
B〇one year
$\mathbf{C} \bigcirc$ one week
\mathbf{D} 〇one day
\mathbf{E} Oone month
$\mid 1 \mathrm{pt}$ The energy of levels $1-4$ of hydrogen are $0,10.2,12.1$ ， and 12.8 electron volts (eV) ，respectively．If the hydrogen is ionized，the electrons are

8． $\mathbf{A} \bigcirc$ in level 4.
$\mathbf{B} \bigcirc$ in level 3.
$\mathbf{C} \bigcirc$ in level 2.
$\mathbf{D} \bigcirc$ in level 1.
$\mathbf{E} \bigcirc$ not in levels 1－4．
$1 p t$ The energy of levels $1-4$ of hydrogen are $0,10.2,12.1$, and 12.8 electron volts (eV), respectively. An electron absorbs 1.9 eV . The electron jumps from
9. A Olevel 4 to 2 .

B Olevel 3 to 2 .
C \bigcirc level 2 to 4 .
D Olevel 2 to 3 .
$1 p t$ X proposed the sun-centered solar system. Y made accurate observations of the planets. Z analyzed the observations of the planets. In order, X, Y, and Z are
10. A \bigcirc Tycho, Kepler, \& Copernicus.
$\mathbf{B} \bigcirc$ Copernicus, Kepler, \& Tycho.
$\mathbf{C} \bigcirc$ Copernicus, Tycho, \& Kepler.
$\mathbf{D} \bigcirc$ Kepler, Tycho, \& Copernicus.
$\mathbf{E} \bigcirc$ Kepler, Copernicus, \& Tycho.
$\mathbf{F} \bigcirc$ Tycho, Copernicus, \& Kepler.

$1 p t$ Thermal radiation is

11. $\mathbf{A} \bigcirc$ radiation produced by a hot object.
$\mathbf{B} \bigcirc$ radiation that depends only on the temperature and emissivity of the emitting object.
$\mathbf{C} \bigcirc$ radiation that is felt as heat.
$\mathbf{D} \bigcirc$ radiation in the infrared part of the spectrum.

1 pt The Earth is accelerating primarily because
12. $\mathbf{A} \bigcirc$ it is slowing down.
$\mathbf{B} \bigcirc$ its direction is changing.
$\mathbf{C} \bigcirc$ The earth is not accelerating.
$\mathbf{D} \bigcirc$ it is speeding up.
$1 p t \mathrm{~S} 1$: The speed of the Earth in its orbit is greater than the speed of Saturn. S2: The speed of the Earth in January is greater than in July. Kepler's Law of Equal Areas helps explain
13. A \bigcirc both S 1 and S2.
$\mathrm{B} \bigcirc \mathrm{S} 2$ only.
C \bigcirc S1 only.
D \bigcirc neither S1 nor S2.

1 pt Moons of Jupiter, the rings of Saturn, and the phases of Venus: which of these did Galileo not discover?
14. A \bigcirc Rings of Saturn
$\mathbf{B} \bigcirc$ Galileo discovered all of them.
$\mathbf{C} \bigcirc$ Phases of Venus
$\mathbf{D} \bigcirc$ Moons of Jupiter

1 pt Which is one of the large moons of Jupiter?
15. $\mathbf{A} \bigcirc$ Charon
$\mathbf{B} \bigcirc$ Deimos
$\mathbf{C} \bigcirc$ Ganymede
D \bigcirc Titan
$\mathbf{E} \bigcirc$ Phobos
$1 p t$ The planet that is fifth closest to the sun is
16. $\mathbf{A} \bigcirc$ Earth.
$\mathbf{B} \bigcirc$ Jupiter.
$\mathbf{C} \bigcirc$ Saturn.
D \bigcirc Mars
$\mathbf{E} \bigcirc$ Venus.
$1 p t$ Why does the tail of a comet point away from the sun?
17. $\mathbf{A} \bigcirc$ Gas from the comet, heated by the sun, pushes the tail away from the sun.
$\mathbf{B} \bigcirc$ The solar wind blows gas and dust away from the sun.
$\mathbf{C} \bigcirc$ Conservation of angular momentum keeps the tail pointing away.
$\mathbf{D} \bigcirc$ The magnetic field of the sun keeps the tail pointing away.

1 pt Why can the material in the rings of Saturn not collect to form moons?
18. A \bigcirc The gravity of Saturn tears moons apart.
$\mathbf{B} \bigcirc$ The rings are not made of sticky material.
$\mathbf{C} \bigcirc$ There is not enough material.
$\mathbf{D} \bigcirc$ The rings are too thin.

1 pt
Astronomers believe that Mars had liquid water in the
past because
19. A $\bigcirc p$ photographs show dry riverbeds.
$\mathbf{B} \bigcirc$ the space probe Odyssey found water ice.
$\mathbf{C} \bigcirc$ photographs show smooth rocks.
$\mathbf{D} \bigcirc$ microscopic fossils were found.

1 pt What is the source of the energy that heats Io, a moon of Jupiter?

20. A \bigcirc Radioactivity.

$\mathbf{B} \bigcirc$ Solar energy.
$\mathbf{C} \bigcirc$ Motion of the moons.
$\mathbf{D} \bigcirc$ Infrared radiation from Jupiter.

1 pt The space probe Odyssey found that the in regions north and south of 60 degrees latitude the surface is 50% water ice by volume. How is it that Odyssey was able to detect this water?
21. $\mathbf{A} \bigcirc$ The density of the surface was greater where there is no water.
$\mathbf{B} \bigcirc$ The Odyssey sent a surface probe down to collect samples.
$\mathbf{C} \bigcirc$ The temperature of the surface is cooler where there was so much ice.
$\mathbf{D} \bigcirc$ The energy of the neutrons coming off the surface of the planet is lower where there is water.
$\mathbf{E} \bigcirc$ The color of the surface is different where there is water.
$1 p t$ The planets near the sun have a high density because
22. $\mathbf{A} \bigcirc$ the sun evaporated the lighter materials.
$\mathbf{B} \bigcirc$ the lighter materials escaped the planets gravity.
$\mathbf{C} \bigcirc$ the lighter materials could not condense because the proto planet fell too far and became too hot. $\mathbf{D} \bigcirc$ the sun prevented the lighter materials from condensing.

1 pt Consider this hypothetical discovery of a new planet beyond the orbit of Pluto. S1: Its density is 5 times the density of water. S2: It has many craters. _- would require revising theories about planet formation.
23. $\mathbf{A} \bigcirc \mathrm{S} 2$

B \bigcirc Neither S 1 nor S 2
$\mathrm{C} \bigcirc$ S1
D Both S1 \& S2

1 pt The carbon in my hand was made in
24. $\mathbf{A} \bigcirc$ a comet.
$\mathbf{B} \bigcirc$ the center of the sun.
$\mathbf{C} \bigcirc$ some other star.
$\mathbf{D} \bigcirc$ the photosphere of the sun.
$1 p t$ In addition to the losses in the solar wind, the sun loses 5 million tons of mass every second. How can you capture some of that mass?
25. $\mathbf{A} \bigcirc$ Get some hydrogen from the sun.
$\mathbf{B} \bigcirc$ That mass cannot be captured.
$\mathbf{C} \bigcirc$ Absorb some sun light.
$\mathbf{D} \bigcirc$ Get some helium from the sun.

1 pt Compared to a main sequence star of spectral class A, a main sequence star of spectral class F is
26. A \bigcirc cooler and more massive.
$\mathbf{B} \bigcirc$ hotter and less massive.
$\mathbf{C} \bigcirc$ cooler and less massive.
$\mathbf{D} \bigcirc$ hotter and more massive.

1 pt In which of these stages does the sun spend the longest time?

27. $\mathbf{A} \bigcirc$ Main sequence.

B Giant.
$\mathbf{C} \bigcirc$ White dwarf.
$\mathbf{D} \bigcirc$ Planetary nebula.

1 pt Has the sun ever been or will be a star like Vega, an A main-sequence star? Same question for Aldebaran, a K giant?
28. $\mathbf{A} \bigcirc$ Yes for Vega. Yes for Aldebaran.
$\mathbf{B} \bigcirc$ No for Vega. Yes for Aldebaran.
$\mathbf{C} \bigcirc$ Yes for Vega. No for Aldebaran.
$\mathbf{D} \bigcirc$ No for Vega. No for Aldebaran.

1 pt If a giant hand moved Vega twice as far as it is, it moves (1) down and (2) right on the HR diagram. True or false?
29. $\mathbf{A} \bigcirc$ TF
$B \bigcirc F F$
C○TT
D \bigcirc FT

1 pt A star cluster has A, M, F, G, and K main-sequence stars and K and M giants. After a few billion years, a single type of star will be gone. What type will be gone?
30. $\mathbf{A} \bigcirc M$ giants
$\mathbf{B} \bigcirc M$ dwarfs
$\mathbf{C} \bigcirc G$ dwarfs
$\mathbf{D} \bigcirc$ F dwarfs
$\mathbf{E} \bigcirc \mathrm{K}$ giants
$\mathbf{F} \bigcirc \mathrm{A}$ dwarfs
$1 p t$ In a degenerate gas, the pressure increases if (1) the temperature increases, (2) if the space for the gas decreases. Clauses (1) and (2) are
31. $\mathrm{A} \bigcirc$ TT
$B \bigcirc F F$
$\mathrm{C} \bigcirc$ TF
D \bigcirc FT
$1 p t$ At some time after the main-sequence phase, 1) the sun burns helium, 2) it burns hydrogen, and 3) it burns carbon. Clauses 1, 2, and 3 are
32. $\mathbf{A} \bigcirc F F T$

B \bigcirc TFF
C $\bigcirc F F F$
D \bigcirc FTF
E \bigcirc TFT
F○TTT
G○TTF
$\mathbf{H} \bigcirc$ FTT

1 pt Suppose the temperature of star A and star B are the same. The flux of Star A is 100 times less than that of star B. Which answer is always true?
33. $\mathbf{A} \bigcirc$ Star A is smaller.
$\mathbf{B} \bigcirc$ Star A is closer.
$\mathbf{C} \bigcirc$ Star A is bigger.
D \bigcirc Star A is farther away.
$\mathbf{E} \bigcirc$ None of the other answers is always true.
$1 p t$ S1: The sun has been burning hydrogen for about 5 billion years. S2: It will use up its hydrogen in about 5 billion years. Statements S1 and S2 are
34. $\mathbf{A} \bigcirc F F$
$B \bigcirc T F$
$\mathrm{C} \bigcirc \mathrm{FT}$
D \bigcirc TT
$1 p t$ The disk of the Milky Way appears in the sky as
35. $\mathbf{A} \bigcirc$ The disk is invisible to the naked eye.
$\mathbf{B} \bigcirc$ a fuzzy cloud in the constellation Orion.
$\mathbf{C} \bigcirc$ a fuzzy cloud in the constellation Virgo.
$\mathbf{D} \bigcirc$ a band of light that goes all of the way across the sky.

1 pt Most of the stars in the halo of the Milky Way are
36. A $\bigcirc v e r y$ young.
$\mathbf{B} \bigcirc$ found inside molecular clouds.
$\mathbf{C} \bigcirc$ blue in color.
D \bigcirc very old.

1 pt Consider this hypothetical discovery: A new star is found. It is an O star, and its orbit is highly elliptical. This star is part of
37. $\mathbf{A} \bigcirc$ the globular star system.
$\mathbf{B} \bigcirc$ the bulge.
$\mathbf{C} \bigcirc$ the disk.
$\mathbf{D} \bigcirc$ Unable to answer. The evidence is contradictory. $\mathbf{E} \bigcirc$ the halo.
$1 p t$ Which type of galaxies has no young stars?

```
38. \(\mathbf{A} \bigcirc\) Spiral
\(\mathbf{B} \bigcirc\) Barred spiral
\(\mathbf{C} \bigcirc\) Elliptical
D \(\bigcirc\) Irregular
```

1 pt Why do we believe that most of the mass of galaxies is in the form of dark matter?
39. $\mathbf{A} \bigcirc$ The high orbital speed of stars means the stars feel the gravity of something besides the stars and gas.
$\mathbf{B} \bigcirc$ We can see dark blotches in galaxies.
$\mathbf{C} \bigcirc$ We can see the dark matter at radio wavelengths.
$\mathbf{D} \bigcirc$ Theoretical models suggest that galaxies cannot form unless they have dark matter.

1 pt Penzias \＆Wilson observed radiation that was isotropic．S1：As viewed from Earth，the radiation from the Milky Way Galaxy is isotropic．S2：As viewed from Earth， the radiation from the Big Bang is isotropic．Statements 1 and 2 are

40． $\mathbf{A} \bigcirc$ FT．
B \bigcirc TF．
$\mathbf{C} \bigcirc F F$ ．
D \bigcirc TT．

1 pt A 2－liter bottle of the universe has 0.8 million photons． How many photons were in a $1 / 4$－liter bottle back when the universe was half the present size（when distance between two galaxies was half of the present distances）？

```
41. A}\bigcirc0.8 Million
    B}\bigcirc3\mathrm{ Million
    C\bigcirc6 Million
    D\bigcirc1.6 Million
```

$1 p t$ A 2－liter bottle of the universe has $3 \times 10^{-34} \mathrm{~kg}$ of pho－ tons．How much mass in the form of light was there in a 1／4－liter bottle back when the universe was half the present size？

42． $\mathbf{A} \bigcirc 6 \times 10^{-34} \mathrm{~kg}$
B $\bigcirc 18 \times 10^{-34} \mathrm{~kg}$
$\mathbf{C} \bigcirc 3 \times 10^{-34} \mathrm{~kg}$
D $\bigcirc 12 \times 10^{-34} \mathrm{~kg}$
$\mathbf{E} \bigcirc 24 \times 10^{-34} \mathrm{~kg}$

1 pt The mass of the black hole in M87 is \qquad times the mass of the sun．

43． $\mathbf{A} \bigcirc 3$ billion
$\mathbf{B} \bigcirc 15$
$\mathbf{C} \bigcirc 3$ million
D $\bigcirc 3,000$

1 pt A star orbits the black hole in the center of the Milky Way．Its period is 10 years and the distance between it and the black hole is $1,000 \mathrm{AU}$ ．The mass of the black hole is times the mass of the sun．（The numbers are chosen to make the calculation easier；they do not represent the actual case．）

$$
\text { 44. } \begin{aligned}
& \mathbf{A} \bigcirc 10,000,000 \\
& \mathbf{B} \bigcirc 1,000,000 \\
& \mathbf{C} \bigcirc 10,000 \\
& \mathbf{D} \bigcirc 100
\end{aligned}
$$

1 pt Simplicio says，＂Material falling toward a black hole cannot be seen．＂An example that contradicts Simplicio＇s statement is

45．A \bigcirc the radio source Cygnus A．
B \bigcirc the Orion nebula．
$\mathrm{C} \bigcirc$ Sirius B．
D \bigcirc supernova 1987A．

1 pt In an average $200,000-\mathrm{km}$ sphere（same size as moon＇s orbit），there is

46． $\mathbf{A} \bigcirc 3 \mathrm{lb}$ of dark energy， 1 lb of dark matter，and 3 oz of ordinary matter．
$\mathbf{B} \bigcirc 3 \mathrm{lb}$ of ordinary matter， 1 lb of dark matter，and 3 oz of dark energy．
$\mathbf{C} \bigcirc 3 \mathrm{lb}$ of dark matter， 1 lb of dark energy，and 3 oz of ordinary matter．
$\mathbf{D} \bigcirc 3 \mathrm{lb}$ of radiation．
$\mathbf{E} \bigcirc 3 \mathrm{lb}$ of ordinary matter， 1 lb of dark energy，and 3 oz of dark matter．

> 1 pt You and I are made of
> 47. $\mathbf{A} \bigcirc$ dark matter.
> B〇dark energy/ cosmological constant.
> $\mathbf{C} \bigcirc$ light.
> \mathbf{D} Oordinary matter.

1 pt Decoupling occurs at a temperature of 3000 K ．At that time，what was the distance between the two blobs that even－ tually became the Milky Way and a galaxy now 100 Mly away？

48． $\mathrm{A} \bigcirc 100$ Mly
B $\bigcirc 1000$ Mly
C〇10 Mly
D $\bigcirc 1$ Mly
$\mathbf{E} \bigcirc 0.1$ Mly

1 pt A supernova emitted some light when the scale of the universe was 0．6．Temperature fluctuations are imprinted on the cosmic background radiation．In a universe with more mass，the supernova is＿－－，and the fluctuations appear at＿－＿ angles in the sky．

49．A \bigcirc fainter \＆larger
B \bigcirc brighter \＆larger
$\mathbf{C} \bigcirc$ brighter \＆smaller
D fainter \＆smaller

1 pt Newton and Einstein disagreed on the source of gravity. Einstein said that in addition to mass, \qquad causes gravity.
50. A \bigcirc gas

B〇pressure
$\mathbf{C} \bigcirc$ dark matter
$\mathbf{D} \bigcirc$ radiation
$1 p t$ The WMAP satellite measured
51. A \bigcirc flares on the sun.
$\mathbf{B} \bigcirc$ the temperature and polarization of the cosmic background radiation over the entire sky.
$\mathbf{C} \bigcirc$ the distribution of galaxies.
$\mathbf{D} \bigcirc$ the distribution of ice on Mars. 1pt
52. $\mathbf{A} \bigcirc 4.5 \mathrm{Byr}$

B $\bigcirc 300 \mathrm{Myr}$
$\mathbf{C} \bigcirc 3$ min
D $\bigcirc 0.001 \mathrm{~s}$
$\mathbf{E} \bigcirc 13.7 \mathrm{Byr}$
$1 p t$ What evidence is from the formation of the first stars and galaxies?
53. $\mathbf{A} \bigcirc$ The distribution of galaxies.
$\mathbf{B} \bigcirc$ Polarization of the cosmic background radiation.
$\mathbf{C} \bigcirc$ The abundance of helium.
$\mathbf{D} \bigcirc$ The abundance of lithium.
$1 p t$ What is evidence that the sun was not one of the first stars to form?
54. $\mathbf{A} \bigcirc$ Presence of helium in the sun.
$\mathbf{B} \bigcirc$ Presence of iron in the sun.
C \bigcirc Jovian planets.
D The solar wind.
$\mathbf{E} \bigcirc$ Presence of hydrogen in the sun.

1 pt D1 is the distance between Jupiter and the sun. D2 is the distance between the center of the Milky Way and the Large Magellanic Cloud, a satellite galaxy. D3 is the distance between the Milky Way and Hoag's Galaxy, a distant galaxy. Do distances D1, D2, and D3 expand in step with the expansion of the universe?

55. A $\bigcirc N Y N$

$B \bigcirc N N Y$
$\mathrm{C} \bigcirc \mathrm{YNN}$
D \bigcirc NYY
E○YYN
$\mathbf{F} \bigcirc$ NNN
G○YNY
$\mathbf{H} \bigcirc Y Y Y$
$1 p t$ What is the source of energy in a quasar?
56. A \bigcirc Conversion of potential energy into kinetic energy when material falls towards the black hole.
$\mathbf{B} \bigcirc$ Burning hydrogen
$\mathbf{C} \bigcirc$ Burning helium
$\mathbf{D} \bigcirc$ Burning carbon

1 pt A quasar is

57. A \bigcirc the extremely bright center of a distant galaxy.
$\mathbf{B} \bigcirc$ a starlike object that is actually a gas cloud in the Milky Way Galaxy.
$\mathbf{C} \bigcirc$ a specialized instrument for observing stars
$\mathbf{D} \bigcirc$ a very large galaxy thought to be formed by the merger of two galaxies.

1 pt If Hubble's constant (H in $\mathrm{v}=\mathrm{HD}$) has the same sign but a different value,
58. A \bigcirc the universe would not be expanding.
$\mathbf{B} \bigcirc$ the age of the sun would be different.
$\mathbf{C} \bigcirc$ galaxies at the same distance would be moving faster or slower.
$\mathbf{D} \bigcirc$ there would not be a Big Bang.

1 pt The sun's location in the Milky Way Galaxy is
59. $\mathbf{A} \bigcirc$ in the halo.
$\mathbf{B} \bigcirc$ very near the center.
$\mathbf{C} \bigcirc$ in the disk, roughly halfway between the center and outer edge of the disk.
$\mathbf{D} \bigcirc$ in the globular star system.

1 pt For a black hole having the same mass as the sun, the Schwarzschild radius (the radius within which nothing can escape) is the size of

60. A Othe Earth
$\mathbf{B} \bigcirc$ East Lansing
$\mathbf{C} \bigcirc$ a large shopping mall
D \bigcirc Michigan

1 pt Astronomers showed that there is a massive black hole in the center of the galaxy M87 by
61. $\mathbf{A} \bigcirc$ measuring the distance to M87.
$\mathbf{B} \bigcirc$ measuring the speed of ejected material.
$\mathbf{C} \bigcirc$ measuring the speed and location of stars in orbit. $\mathbf{D} \bigcirc$ observing the luminosity of the nucleus.

1 pt Hoag's Galaxy is 3 times as far as the Coma Cluster of galxies. Will this still be true in the future? Was this true in the past?

62. $\mathrm{A} \bigcirc \mathrm{NN}$

$B \bigcirc Y Y$
$\mathrm{C} \bigcirc \mathrm{NY}$
D \bigcirc YN

1 pt The Coma Cluster of galaxies is moving away from us at $6000 \mathrm{~km} / \mathrm{s}$. When the universe was half as old, Coma was moving from us with about
63. $\mathbf{A} \bigcirc 4$ times the speed.
$\mathbf{B} \bigcirc$ the same speed.
$\mathbf{C} \bigcirc$ half the speed.
$\mathbf{D} \bigcirc$ twice the speed.

1 pt A time machine takes you to 200,000 years after the Big Bang. This is before decoupling. You cannot see very far (only a light year) because
64. A \bigcirc light has not had time to travel far, since the universe is not very old.
$\mathbf{B} \bigcirc$ light travels a short distance and scatters off of electrons.
$\mathbf{C} \bigcirc$ radio waves are very blurred.
$\mathbf{D} \bigcirc$ there are many free neutrons.
$1 p t$ A time machine takes you back in time, and you collect many samples of the universe. The samples contains hydrogen, helium, and no other elements. The time machine took you to _-- after the Big Bang.
65. $\mathbf{A} \bigcirc 1$ minute
$\mathbf{B} \bigcirc 1$ billion years
$\mathbf{C} \bigcirc 1$ thousand years
D $\bigcirc 1$ second
$\mathbf{E} \bigcirc$ More than one answer is possible.
$1 p t$ Why is there much more helium than oxygen in the
sun?
66. A \bigcirc The sun makes helium.
$\mathbf{B} \bigcirc$ Lots of helium was made in the Big Bang.
$\mathbf{C} \bigcirc$ Generations of stars all make helium.
$\mathbf{D} \bigcirc$ The oxygen collected in the planets.

Printed from LON-CAPA@MSU
Licensed under GNU General Public License

