Atmosphere of Earth & Venus

- Test 1
 - Log on to LONCAPA
 - www.loncapa.msu.edu
- Processes that shape earth
 - Losing gases in atmosphere
 - Gaining gases in atmosphere
- Venus
- Goldilocks Paradox

Using LONCAPA
Test 1

- Average 20/34
- Grades
 - 4.0 23; 3.0 21; 2.0 17
 - This is only 15% of course grade.
- Preparing for the next test
 - Purpose of homework & practice test is to check your understanding.
 - Think about key idea for each question.
 - Ideas are important; answers are not. **Do not remember the answers.**
 - Models are important; answers are not. **Do not remember the answers.**
• Q1 50% remembered the answer from practice test. 42% got it correct. **Main idea**: Think about quantities in Law of Gravity.

• Q2 72% remembered answer from practice test. Use **model**, which incorporates main idea.

1. Which is Newton’s Law of Gravity?

 1. A. \(F = ma\)
 2. B. \(F = \frac{GMm}{r^2}\)
 3. C. \(F = \frac{4\pi^2}{GM}r^3\)
 4. D. \(P^2 = P^3\) for \(P\) measured in years and \(R\) in AU.

2. The energy of levels 1-4 of hydrogen are 0, 10.2, 12.1, and 13.8 electron volts (eV), respectively. The hydrogen is warm enough so that some atoms have an electron in level 2, and some atoms have an electron in level 1. Does the hydrogen gas absorb photons with energy 1.9 eV? Does the gas absorb photons with energy 10.2 eV?

 1. A. No for 1.9-eV photons; yes for 10.2-eV photons.
 2. B. Yes for 1.9-eV photons; no for 10.2-eV photons.
 3. C. Yes for 1.9-eV photons; yes for 10.2-eV photons.
 4. D. No for 1.9-eV photons; no for 10.2-eV photons.

3. (#10) There are many ways to express right answer. Use a **model**.

4. (#13) **Main idea**: What did Newton learn that Kepler did not know when he derived Kepler’s 3rd law?

 a. K’s 3rd law depends on mass of sun.
 b. K’s 3rd law depends on mass of big mass.
 c. Nothing
 d. K’s 3rd law depends on mass of little object.

10. Mars moves in retrograde motion when it is

 10. A. in the west just after sunset.
 2. B. rising at sunrise.
 3. C. high in the sky just after sunset.
 4. D. rising at sunset.

13. Consider Kepler’s Third Law, \(P^2 = \text{constant} R^3\), where \(P\) is the period and \(R\) is semi-major axis, applied to the moons of Jupiter. The value of the constant depends primarily on the

 13. A. mass of the sun.
 2. B. mass of Jupiter.
 3. C. The constant does not depend on any mass.
 4. D. mass of the moon.
Atmosphere of planets: loss of gases

- Planets formed from the same material but now have very different atmospheres.
 - Earth has little helium; Jupiter has a lot of helium
 - Mercury has little atmosphere
- Think of gas molecules as baseballs moving and colliding. How do baseballs escape from the earth’s gravity?
- Average kinetic energy of gas molecule
 - \(KE = \frac{3k}{2} \) Temperature
 - \(KE = \frac{1}{2} \text{ mass} \times \text{ speed}^2 \)
- Q: Oxygen molecules (m=32) in the air move at an average speed of 300 m/s. Helium (m=4) moves at an average speed of
 a. 40 m/s
 b. 300 m/s
 c. 850 m/s
 d. 2400 m/s
- Baseball can escape if Kinetic Energy > Potential Energy
 - \(\text{ speed}^2 > \frac{2GM_{Earth}}{R_{Earth}} \)
 - Escape speed from earth is 11,000 m/s. How can helium escape?

- How can helium escape from earth? By chance, a helium atom gets much more speed than the average and escapes.
 - Average 850 m/s
 - Very rare 12,000 m/s
 - On earth, each molecule get a new try every billionth of a second.
- Q: S1: It is easier to lose a lighter gas. S2: It is easier to lose gas from a hotter planet. S3: It is easier to lose gas from a more massive planet.
 a. T T T
 b. F T T
 c. T F T
 d. T T F
 e. Two are false
Venus is too hot for life. What went wrong?

- Description of Venus
- Atmosphere of Venus
- What went wrong?

Venus
(according to Botticelli)
Astronomer’s Venus

<table>
<thead>
<tr>
<th></th>
<th>Venus</th>
<th>Earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>0.95</td>
<td>1</td>
</tr>
<tr>
<td>Mass</td>
<td>0.81</td>
<td>1</td>
</tr>
<tr>
<td>Semi-major axis</td>
<td>0.72</td>
<td>1</td>
</tr>
<tr>
<td>Density</td>
<td>0.96</td>
<td>1</td>
</tr>
<tr>
<td>Rotation (days)</td>
<td>-243</td>
<td>1</td>
</tr>
<tr>
<td>Orbit period (days)</td>
<td>224</td>
<td>365</td>
</tr>
</tbody>
</table>

Venera Landers (USSR)

- Venera 7 (1970)
- Venera 10,11 (1975)
- Venera 11,12 (1978)
- Venera 13,14 (1981)

Venera 13, 14 soil samples: basalts

The view from Venera 14
Radar Map of Venus

Made by Magellan orbiter in 1991-93.

Blue = lower
Brown/red = higher.

The surface of Venus [7.4]

• Impact craters
 ➔ age dating of surface
 • only 15% as many craters as lunar maria.

• Oldest terrain only 800 million yrs old
 • compare to 3.8 billion yrs on Earth

• Constant resurfacing by volcanic action.
 • but appears to have ceased ~ 500 million yrs ago

Rotating Venus
Volcanic Activity on Venus

Radar Imaging: 100 m resolution

Sif Mons, a shield volcano 500 km diameter x 3 km high.

“Pancake” volcanoes, due to very thick lava.

Corona: a collapsed dome over a magma chamber.

Lava flow

Interior Structure

- Similar to Earth
- Iron core 3000 km in radius
- Molten mantle
- Crust

Tectonics

- No plates as on earth
- But much shearing, compression and stretching of crust by convection currents in mantle.
- Has pushed up “continents”
 - Aphrodite and Ishtar
 - Rift valleys and cracks
The Atmosphere of Venus

- Surface Pressure = 92 x Earth’s
- Surface Temperature = 482°C
 - melting point of lead: 327°C
- Sulfuric acid cloud layer at 30-60 km

<table>
<thead>
<tr>
<th></th>
<th>Venus</th>
<th>Earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>96%</td>
<td>0.03%</td>
</tr>
<tr>
<td>N₂</td>
<td>3.5</td>
<td>78.1</td>
</tr>
<tr>
<td>Ar</td>
<td>0.006</td>
<td>0.93</td>
</tr>
<tr>
<td>O₂</td>
<td>0.003</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Some Surface Temperatures in °F

- Mercury (Mariner 10) 800°F
- Venus (Mariner 2; Venera landers) 900°F
- Hell (Revelations 21:8) 832°F
 - “But the fearful and unbelieving shall have their part in the lake which burneth with fire and brimstone”
 - boiling point of brimstone (sulfur); 832°F
Life & the Earth’s Atmosphere

• Life started in CO\textsubscript{2} atmosphere, roughly 4 billion yrs ago.
• Life initially only in sea… converted CO\textsubscript{2} to oxygen through *photosynthesis*.
• The released oxygen was swallowed up in interactions with surface material until ~ 2 billion yrs ago.
• After 2 billion yrs ago, oxygen able to build up in atmosphere.
 • + geological activity buried much of the free carbon.
• Atmosphere then converted to today’s mix:
 78% nitrogen, 21% oxygen, 1% everything else.
• Free oxygen \(\rightarrow\) ozone
 \(\rightarrow\) protection from ultraviolet light\(\rightarrow\) land animals

Life converted Earth’s atmosphere from CO\textsubscript{2} to N\textsubscript{2}, O\textsubscript{2}

• Q for next class: Why did Venus get too hot, even though Earth, its twin, remained temperate?