Jovian (Jupiter like) Planets

- Jupiter
- Internal structure
- Heat source
- Moons \& rings

Jupiter

- Main constituents of gaseous atmosphere:
- Hydrogen: 90\%
- Helium: 10%
- Methane $\left(\mathrm{CH}_{4}\right): 0.2 \%$
- Ammonia $\left(\mathrm{NH}_{3}\right): 0.02 \%$
- Clouds
- Frozen ammonia (white)
- Frozen ammonium hydrosulfide (brown \& red)

Rotating Jupiter

What is inside the Jovian planets?

- Structure of Jupiter
- Why is pressure higher nearer the center?
- Pressure supports the mass above.
- Why is the density higher nearer the center?
- Pressure

Why is Jupiter hot in the center?

- Hot means the atoms are moving faster.
- Q1: I am a tennis ball pretending to be an atom. I am dropped from a height of 6 ft . In what sense does the atom get hotter?
a. The tennis ball is moving faster.
b. The molecules in the tennis ball are moving faster.
c. The tennis ball gets hot when it hits the ground.
- Q2: What is the source of the energy that heats the atom?
a. Chemical
b. Nuclear
c. Gravity

Collapse of the Protosolar Cloud

- I am a hydrogen molecule in the cloud that will become the sun.
- My energy is kinetic (due to motion) and potential (due to gravity).

Energy $=\mathrm{KE}+\mathrm{PE}$
$=1 / 2 \mathrm{~m} \mathrm{v}^{2}-\mathrm{GMm} / \mathrm{r}^{2}$

- Speed v
- Distance r to center of cloud
- Q3: When I fall from $r=5$ to r = 1 , my KE (and temperature) increases by a factor \qquad
a. About 2
b. About 3
c. About 5
d. More than 10

또

- Why is the center of Jupiter hot?
 unchanged as molecule falls.
- Material fell and changed gravitational energy into energy of motion.

Jupiter's heat sources

- 50% is from solar energy
- But other 50% comes from internal heating
- This is gravitational energy released when Jupiter formed.
- Currently stored in interior as heat energy.
- Slowly being radiated away.
- Plus maybe some continuing energy release from contraction.
- Similar effect in Saturn
- But additional effect of same magnitude from ongoing differentiation.
- Separation of H from He.

Moons of Jupiter - Age of Surface

4. Which moon has the youngest surface? [Do not look in your book. Examine the pictures \& deduce the answer.] [Hint: Compare the appearance of surfaces of earth \& moon.]

	Diameter Relative Density \% Reflectivity			
	(km)	Mass	cm	
Moon	3476	1.0	3.3	12
Callisto	4820	1.5	1.8	20
Ganymede	5270	2.0	1.9	40
Europa	3130	0.7	3.0	70
10	3640	1.2	3.5	60

Callisto

- Orbital period: 17 days
- Tidal locking with Jupiter
- Surface temperature $=-140^{\circ} \mathrm{C}$
- appears to be mostly ice.
- 1.8 x density of water
- Many impact craters.

Callisto

Europa

- Not made of ice.
- Density similar to Moon
- Tidal forces keep it geologically active.
- Covered by layer of water ice.
- Appears to be "pack ice" on top of an ocean.
- Water must be warmed by heat from Europa's interior.

Io

- Closest to Jupiter (of Galilean Satellites)
- Strongest tidal forces.
- Active volcanoes
- hot silicate lava, similar to Earth.

Images of same region, 5 months apart.

Haemus Mons -
a volcanic cone

Loki Patera
Thought to be a liquid sulphur lake with a solid sulpher raft.

The Innermost Moons of Jupiter

- Q5: What holds a yardstick together?
a. Gravity
b. Atomic bonds between the atoms
- Q6: What holds Io \& Metis together?
a. Gravity for both
b. Bonds for both
c. Gravity for Io; bonds for Metis
d. Gravity for Metis; bonds for Io

Roche limit

- For a moon in orbit around a planet,
- $\mathrm{P}^{2}=\mathrm{a}^{3} \rightarrow$ different parts of extended body have different orbital periods.
- So body tends to be torn apart. (More important close in.)
- But self-gravity tends to hold it together. (More important far out.)
- Roche's limit is where these two opposing effects are balanced:

- If density of planet \& moon are the same, then

$$
R_{\text {Roche }}=2.5 R_{\text {planet }}
$$

4. Why can't the material in the rings collect to form moons?
a. There is not enough material
b. The rings are too thin
c. The rings are inside the Roche limit

d. The rings are not made of sticky material

