Life & Mystery Topic

- Mystery topic
- What is needed for life?

- Test 2 on Tues, Feb 27
 - Large majority on solar system
 - Some question on telescopes & topics covered in test 1
 - Format similar to Test 1
 - Practice test: link on syllabus
 - Life & mystery not on test.

- Missouri “Show Me” Club
 - Today, 7:30-8:30pm, here

51 Pegasi

- Michael Mayor & Didier Queloz discovered something important by studying the star 51 Pegasi.
 - M&Q measured the speed of the star using Doppler effect
 - Doppler effect (p. 116): motion of star or us changes wavelength of light
 - Doppler effect measures only speed toward or away from us.

- Steps
 - Examine the data for the facts. Which clues are important? What is remarkable? What do I need to know? Ask.
 - Brainstorming
 - Developing your idea
 - Testing your idea
Motion of 51 Peg Away & Towards Us

Extrasolar planets

- What did Mayor & Queloz discover?
- Q What key clue says they discovered a planet and not a faint star?
 a. Period is 4 days 5 hr.
 b. Speed of star is 60 m/s.
 c. Motion repeats.
 d. They did not see the companion object.
Other ways to find extrasolar planets

• Observe light of planet
 – Did M&Q see what they discovered? No
 – Light from star overwhelms light from planet.

• Occultation
 – Planet partially blocks light of star
 – Need planet, star, Earth alignment.
 – Can measure size of planet.

Info from extrasolar planets

• Selection bias
 – Massive planets
 – Short periods

• Median distance <1AU

• Mass
 – Most are more massive than Jupiter
 – None are as massive as Earth.

• Density (few known)
 – Like Jupiter

• Orbital eccentricity
 – More eccentric than planets in solar system
Info from extrasolar planets

- **Selection bias**
 - Massive planets
 - Short periods
- **Median distance <1AU**
- **Mass**
 - Most are more massive than Jupiter
 - None are as massive as Earth.
- **Density (few known)**
 - Like Jupiter
- **Orbital eccentricity**
 - More eccentric than planets in solar system

- **Q:** Which observations, when paired together, are surprising?
 a. Mass & density
 b. Mass & distance

Planets close to the star “should” be rocky and not massive.

Best idea:
- Planet did form far from star. Planet migrated close to star.
Life on earth

Evidence for life on the new Earth

- **C12/C13 ratio**
 - Living things have higher ratio of C12 than in non-living things.
 - Carbon in rock from 3.85Byr contain same higher C12/C13 ratio.
 - Carbon-incorporating life existed 3.85Byr ago

- **Stromatolite (mats of bacteria)**
 - Bacteria existed 3.5Byr ago

Fig 18-4 This section of a 3.5-billion-year-old stromatolite shows a structure nearly identical to that of a living mat. Thus, it offers strong evidence of having been made by microbes, including some photosynthetic ones, that lived 3.5 billion years ago.
How did life on Earth start?

- Urey-Miller experiment
 - With lightening, gases assemble into organic molecules
 - Life formed from these organic molecules
- Migration from outside Earth
 - Martian meteorite

Necessities for life

- Water
- Source of energy
- Building material
- Q: What is the source of energy for a tomato plant?
 a. Sunlight
 b. Heat from a volcano
 c. Radioactivity
- Q: What is the primary source of building materials for an oak tree?
 a. Ground
 b. Air
Bare necessities

• Time scale for life
 – Seconds
 – Could be millions of years

• Is sunlight absolutely necessary?
 – No: bacteria live near volcanic vents in the ocean.

• Is liquid water absolutely necessary?
 – An experiment
 • Place bacteria in a cold environment with radioactive nutrients
 • Wait a long time.
 • Did bacteria use the nutrients? Are bacteria radioactive?

Life in the solar system

• Requirements
 – Water
 – Energy
 – Building material
Europa

- *Not* made of ice.
 - Density similar to Moon
- Tidal forces keep it geologically active.
- Covered by layer of water ice.
 - Appears to be “pack ice” on top of an ocean.
 - Water must be warmed by heat from Europa’s interior.

Europa’s surface

- Ice rafts
- Nebraska-sized area showing ice and channels.
- Ice flow cutting across ridge
- The occasional impact crater
Titan

In visible light, from Voyager

- Composition: half ice, half rock.
- Has an atmosphere, with many similarities to Earth’s.

Cassini Satellite:
Radar images

Titan Dunes over Possible Craters
saturn.jpl.nasa.gov
Titan’s atmosphere

- Density about same as Earth’s 1.5 bars
- Primarily N₂, but also:
 - carbon monoxide (CO)
 - methane (CH₄)
 - ethane (C₂H₆)
 - propane (C₃H₈)
 - hydrogen cyanide (HCN)
 - a building block of DNA
 - C₂N₂, HC₃N
- Q: Which life-indicating gas is missing? A: CO₂; B: O₂; C: Neon; D: