The Future Sun Homework 5 is due 6:30am on Friday, 23 March. Public viewing sessions at MSU campus observatory. • Fri & Sat, 9-11pm, if it is not cloudy. • Mar 23 & 24 • Apr 20 & 21 • May 18 & 19 Giants are dying stars; • white dwarfs are dead stars Why does the sun die? ٠ What will the sun become when it dies?

Giants are dying stars; white dwarfs are dead stars

- Evidence on giants from star clusters
 - · Compare members of a population
- All stars in a cluster are born at once.
 - Formation time is the • collapse time of the cluster, which is very short.
- I am a G star like the sun. I have 100,000 fraternal twins, some weighing 30 times my mass, some 1/10 of my mass.

M80

Pleiades

H-R Diagrams of star clusters

- Q3 The hottest dwarfs in Pleiades are A stars. The hottest dwarfs in M15 are F stars. Pleiades is ____ than M15.
 - a. older
 - b. younger

After helium is used up	
Reaction	Min. Temp.
4 ¹H → ⁴He	10 ⁷ ° K
3 4He → ¹² C	2x10 ⁸ Triple-alpha process
¹² C + ⁴ He → ¹⁶ O, Ne, Na, Mg	8x10 ⁸
Ne ➔ O, Mg	1.5x10 ⁹
O ➔ Mg, S	2x10 ⁹
Si → Fe peak	3x10 ⁹
 Contraction heats center Helium starts to burn. 	$H \rightarrow He (core)$ $H \rightarrow He (shell)$

- Helix nebula
- Gas & dust ejected by star in the middle.
- Ejection occurred several times.
- Wind blows gas into previous ejecta.
- Colors
 - Blue: O
 - Red: H & N

NASA, NOAO, ESA, Hubble Helix Nebula Team, M. Meixner (STScI), and T.A. Rector (NRAO).

