
2. A giant hand took one of the planets discovered around other stars and put it in the solar system at the same distance from the sun as from its star. The mass of the planet is approximately that of Jupiter and the orbit is approximately that of Earth.

These are the "hot Jupiters", as big as Jupiter but much closer to their star than Jupiter is to the Sun.
13. Has the sun ever been or will it be a star like Barnard's star, a K main sequence star?

- No, the Sun is a G type main sequence star, more massive than a K-type star
- So no for Barnard's star (and also no for the Crab pulsar)

36. Potassium 40 (K40) decays into argon 40 (Ar40) with a half-life of 1.25 billion years. An asteroid is found with 3 parts of K40 for every 1 part of Ar40. Assume there was no Ar40 when the asteroid formed. The asteroid formed

Age 0: 0 Ar40
Age 1.25 billion years: half of the K40 is now Ar40, so 1 part of K40 and 1 part of Ar40
Age of 2.5 billion years: one quarter K40 and three quarters Ar40; so 1 part K40 to 3 parts of Ar 40

So the answer must be an age smaller than 1.25 billion years

Three Main Types of Galaxies

1. Spiral Galaxies
2. Elliptical Galaxies
3. Irregular Galaxies

NGC 4414: Spiral Galaxy

- Gas
- Young stars
- Dust
- Halo
- Globular clusters
- Dark matter

Clicker Question

Where in this galaxy would we find Very young, massive, stars?
A. Spiral arms
B. Central bulge
C. Globular clusters
D. Halo

Large Magellanic Cloud: Irregular Galaxy

- Gas
- Young stars
- Dust
- Globular clusters
- Dark matter

Satellite Galaxies

How are galaxies grouped together?

How do we measure the distances

> to galaxies?

Measuring distances inside the Galaxy

- Parallax: to $300 \mathrm{pc}=1000 \mathrm{LY}$

LATER

- Then... Pulsating variables (Cepheids, RR Lyraes)

$$
\begin{aligned}
& \mathrm{F}=\mathrm{L} /\left(4 \pi \mathrm{r}^{2}\right) \\
& \mathrm{r}=\sqrt{\mathrm{L} /(4 \pi \mathrm{~F})}
\end{aligned}
$$

Cepheid Variable Stars

- These are pulsating giant stars
- They change brightness as they pulsate
- The brighter they are, the longer they take to pulsate

- BRIGHT: 1,000-30,000 solar luminosities
- Regular variations in brightness

Cepheid Variables

Period-Luminosity Relation

Clicker question. You see two Cepheid stars that have the same period, but one has an apparent brightness 10,000 times fainter than the other one. The fainter Cepheid is how many times farther away than the brighter one?
A. 10,000 times farther
B. 100 times farther
C. 10 times farther

The Cosmic

Distance Ladder

- Parallax
- $300 \mathrm{pc}=1000 \mathrm{LY}$
- Calibrate main sequence fitting.
- Calibrate luminosities of Pulsating Variables
- Map rest of Milky Way

The Cosmic

Distance Ladder

- Parallax
- $300 \mathrm{pc}=1000 \mathrm{LY}$
- Calibrate main sequence fitting.
- Calibrate luminosities of Pulsating Variables
- Map rest of Milky Way

2,500,000 LY

Measure luminosities of

- Brightest stars $10,000 \mathrm{~L}_{\odot}$
- Brightest globular clusters $100,000 \mathrm{~L}_{\odot}$
- Brightest H II regions $100,000 \mathrm{~L}_{\odot}$
- Etc.
- $\boldsymbol{\rightarrow}$ can now measure distances to more distant galaxies

Cepheid variable star in M100 with period of about a month

Modern methods of determining distances

Measuring Radial Velocity: The Doppler effect

- If wave's source is moving,
- stationary observer measures different frequency
- = different wavelength.
- True for water waves, sound waves, and light waves.
- Shift in wavelength is
$\Delta \lambda=\lambda_{\text {observed }}-\lambda_{\text {rest }}$
- For $\mathrm{v}=$ velocity of emitter, $\mathrm{c}=$ velocity of light

$$
\frac{\Delta \lambda}{\lambda}=\frac{v}{c}
$$

- This Doppler shift only measures velocity along line of sight.
- v / c is called redshift source is moving away, if $\Delta \lambda>0$
- v / c is called blueshift source is moving towards us, if $\Delta \lambda<0$

[Fig 5.11]

Measuring Radial Velocity: The Doppler effect

- Vesto Slipher in Flagstaff
- Observed spectra of nearby galaxies
- Some observations took several nights
- Shift in wavelength is

$$
\Delta \lambda=\lambda_{\text {observed }}-\lambda_{\text {rest }}
$$

- For $\mathrm{v}=$ velocity of emitter,
$\mathrm{c}=$ velocity of wave

$$
\frac{\Delta \lambda}{\lambda}=\frac{\mathrm{v}}{\mathrm{c}}
$$

- This Doppler shift only measures velocity along line of sight.
[Fig. 15.14]

Vesto Slipher

Large redshifts

- Measure Doppler shift from emission or absorption lines:

Redshift $\mathrm{z}=\Delta \lambda / \lambda=\mathrm{v} / \mathrm{c}$

Hubble's Law

- Hubble's Law: v = H D
- Hubble 1929, Proc. Nat. Acad. Sci. 15, 168

