1	N	•	n	n	_
	N	а	ш	п	e

1 pt At the present time at the center of the sun, fusion converts hydrogen into

- 1. A Carbon
 - \mathbf{B} neon.
 - **C**Ohelium
 - \mathbf{D} Oxygen

1 pt The temperature of the center of the sun is about

- **2**. **A**()10 million K.
 - $\mathbf{B} \bigcirc 10$ billion K.
 - $\mathbf{C} \bigcirc 200 \text{ million K}.$
 - **D**()6000 K.

1 pt The sun will use up its hydrogen in

- **3**. $\mathbf{A} \bigcirc 5$ million years.
 - **B**∩1 billion years.
 - $\mathbb{C}\bigcirc 5$ billion years.
 - **D**Otrillions of years.

1 pt The sun has been shining for about

- **4**. **A** \bigcirc 5 billion years.
 - **B**○1 billion years.
 - $\mathbb{C} \bigcirc 5$ million years.
 - **D**()trillions of years.

1 pt There is more helium in the center of the sun than the surface primarily because

- **5**. **A**Othe helium displaced the carbon.
 - **B**()the heavy helium sunk.
 - **C**○helium is being made there.
 - **D**()helium is repelled by hydrogen.

1 pt If I shine a flashlight toward the sun, the light goes as far as the ___ without being absorbed.

- **6**. **A** photosphere
 - \mathbf{B} \bigcirc corona
 - C()solar wind
 - **D**()convection zone

1 pt The carbon in the photosphere of the sun was made in

- **7**. **A**Othe center of the sun.
 - \mathbf{B} the photosphere of the sun.
 - \mathbf{C} some other star.
 - \mathbf{D} a comet.

1 pt In addition to the losses in the solar wind, the sun loses 5 million tons of mass every second. Which region is losing mass?

- **8**. **A** Chromosphere.
 - **B**\(\)Convection zone.
 - $\mathbf{C} \bigcirc \text{Core.}$
 - $\mathbf{D} \bigcirc \mathrm{Photosphere}.$

[1 pt] If a giant hand doubled the mass of the sun, the new sun would be (1) hotter and (2) slightly bigger. (1) & (2) are

- 9. A false & true.
 - **B**()true & false.
 - C∩true & true
 - $\mathbf{D}\bigcirc \mathrm{false}\ \&\ \mathrm{false}.$

1 pt Compared to a main sequence star of spectral class G, a main sequence star of spectral class F is

- **10**. **A** hotter and more massive.
 - **B**()cooler and more massive.
 - **C**()hotter and less massive.
 - **D**()cooler and less massive.

1 pt In which of these stages does the sun spend the longest time?

- **11**. **A**∩Giant.
 - B()Giant and main sequence stages last the same time.
 - **C**()Planetary nebula.
 - **D**()Main sequence.

1 pt Has the sun ever been or will be a star like Vega, an A main-sequence star? Same question for Aldebaran, a K giant?

- 12. A\(\)No for Vega. Yes for Aldebaran.
 - **B**(Yes for Vega. No for Aldebaran.
 - $\mathbf{C} \bigcirc \text{No}$ for Vega. No for Aldebaran.
 - **D**\OYes for Vega. Yes for Aldebaran.

	1 pt	If a	giant	hand	${\rm moved}$	Vega	${\rm twice}$	as	far	as	it	is,	i
•		(1)	1	1 (6	2):1. 4	41-	- IID	1:-			m.		_

it moves (1) down and (2) right on the HR diagram. True or false?

13. **A**)FF

 $\mathbf{B}\bigcirc\mathbf{FF}$

 $\mathbf{C} \cap \mathbf{FT}$

 $\mathbf{D} \bigcirc \mathrm{TF}$

1 pt A dwarf star has twice the mass and 8 times the luminosity as the sun. Compared with the sun, it will live

14. **A** for the same amount of time.

 $\mathbf{B} \bigcirc 2$ times as long.

 $\mathbf{C} \cap 1/4$ as long.

 $\mathbf{D} \bigcirc 8$ times as long.

1 pt A star cluster has M, F, G, and K main-sequence stars and K and M giants. After a few billion years, a single type of star will be gone. What type will be gone?

15. $\mathbf{A} \cap \mathbf{G}$ dwarfs

B()K giants

C()M giants

 $\mathbf{D} \bigcirc \mathbf{F}$ dwarfs

1 pt | S1: If the temperature in the center of the sun increases, the electrons move faster. S2: If the temperature in the center of a white-dwarf increases, the electrons move faster. S1 and S2 are

16. **A**()TF

 $\mathbf{B} \bigcirc \mathrm{FT}$

 $\mathbf{C} \bigcirc \mathbf{T} \mathbf{T}$

 $\mathbf{D} \bigcirc FF$

1 pt In a degenerate gas, the pressure increases if (1) the temperature increases, (2) if the space for the gas increases. Clauses (1) and (2) are

17. **A** \bigcirc TF

 $\mathbf{B} \bigcirc \mathrm{TT}$

 $\mathbf{C} \cap \mathbf{FF}$

 $\mathbf{D}\bigcirc\mathbf{FT}$

1 pt S1: A white dwarf is about the same size as the earth. S2: A neutron star is about the same size as Michigan. Statements S1 and S2 are

18. **A**()FT

 $\mathbf{B} \bigcirc \mathrm{TT}$

 $\mathbf{C} \bigcirc \mathbf{FF}$

 $\mathbf{D} \bigcirc \mathrm{TF}$

1 pt In order of occurrence, the sun will be

19. **A** main-sequence star, planetary nebula, giant.

B()planetary nebula, main-sequence star, giant.

C()giant, main-sequence star, planetary nebula.

D()main-sequence star, giant, planetary nebula.

E()giant, planetary nebula, main-sequence star.

1 pt When the sun first runs out of hydrogen in the center, (1) it burns helium and (2) it becomes hotter in the center. Clause (1) and (2) are

20. **A**○FT

 $\mathbf{B} \cap \mathbf{FF}$

 $\mathbf{C} \cap \mathrm{TF}$

 $\mathbf{D} \bigcirc \mathrm{TT}$

1 pt In 1054, Chinese astronomers saw a supernova in the constellation Cancer. Now it is a neutron star and a supernova remnant. What was that star burning a year before the explosion?

21. **A**()only iron.

B()hydrogen, helium, neon, as well as other elements.

Conly hydrogen, helium, & iron.

 \mathbf{D} only neon.

1 pt The oxygen and calcium nuclei in your bones were made most likely in

22. A plants.

 \mathbf{B} the sun.

C() a massive star that exploded as a supernova.

 \mathbf{D} rocks.

1 pt S1: The sun will become supernova. S2: The sun will become a white dwarf. Statements S1 and S2 are

23. A\(\)TF

 $\mathbf{B} \bigcirc \mathrm{TT}$

 $\mathbf{C} \cap \mathbf{FF}$

 $\mathbf{D} \bigcirc \mathbf{FT}$

Test3

1 pt	Spica,	which	has	12	${\rm times}$	the	mass	of	the	sun,	will
becon	ne										

24. A\(\)a supernova.

B()a white dwarf.

C() a supernova and then a white dwarf.

DOneither a supernova nor a white dwarf.

 $\fbox{$1$ pt}$ The last supernova that was visible to the naked eye was in

25. **A**()1054

B()1987

C()1604

D()2004

1 pt Suppose star A and star B are both main sequence stars. The luminosity of Star A is 100 times less than that of star B. Which answer is always true?

26. **A** Star A is farther away.

BOStar A is closer.

C()Star A is cooler.

D()Star A is hotter.

1 pt Suppose the temperature of star A and star B are the same. The luminosity of Star A is 100 times less than that of star B. Which answer is always true?

27. A Star A is smaller.

B○Star A is closer.

C∩Star A is bigger.

D(Star A is farther away.

1 pt Stars A and B in the Pleiades star cluster have the same temperature. The luminosity of Star A is 100 times less than that of star B. Star A is on the main sequence. Which answer is always true?

28. **A** Star B is a giant.

B○Star B is a lot older.

C∩Star A is a lot older.

D()Star B is a white dwarf.

1 pt S1: A new binary star is found. S2: The mass of the main-sequence star is 4 times the mass of the sun. S3: The giant has the same mass as the sun. Recall that the stars in a binary system formed at the same time. What is surprising about this discovery?

29. **A**\(\)S2 & S3 together

 $\mathbf{B} \bigcirc \mathrm{S1} \ \& \ \mathrm{S3} \ \mathrm{together}$

C()Nothing

 $\mathbf{D} \bigcirc \mathbf{S}1 \& \mathbf{S}2 \text{ together}$

30. **A**has many neutrons.

B() fuses to produce uranium.

 \mathbf{C} is the most stable element.

D() is very heavy.

1 pt When will the earth first become too hot for humans?

31. **A**∩In 5 Byr.

 $\mathbf{B}\bigcirc \text{In } 1000 \text{ yr.}$

 $\mathbf{C} \bigcirc \text{In 1 Myr.}$

 \mathbf{D} OIn 1-4 Byr.

1 pt The maximum mass for a white dwarf is 1.4 times the mass of the sun. The reason for this limit is:

32. **A** Electrons cannot move faster than light.

B(Carbon can ignite at higher masses.

C Oxygen can ignite at higher masses.

 $\mathbf{D} \bigcirc \mathrm{Electrons}$ condense.

1 pt The size (Schwartzschild radius) of a black hole having the same mass as the sun is about the size of

33. \mathbf{A} the earth.

BOthe MSU campus.

C○Michigan.

D() the BMPS building.

1 pt Some X-ray sources are black holes because

34. **A**○black hole suck up the other types of light

B()X-rays can escape from a black hole.

C\(\)material falling toward a black hole is heated to high temperature.

D()X-rays are not absorbed by the black hole.

1 pt	Which	system	contains	a	black	hole?

35. **A**\(\text{Betelgeuse}\)

BOSirius

 $\mathbf{C}\bigcirc\mathbf{Crab}$ nebula

 $\mathbf{D} \bigcirc \mathrm{Cygnus} \ \mathrm{X1}$

Printed from LON-CAPA MSU

Licensed under GNU General Public License