Summary of Chapter 16 - Electrical Energy and Capacitance

Please read Chapter 16 carefully, and make sure that you understand the summary points below.

- The difference in electric potential between two points, A and B, is

$$
\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=\frac{\Delta(\mathrm{PE})}{\mathrm{q}}
$$

where $\Delta(\mathrm{PE})$ is the change in electrical potential energy experienced by a charge, q, as it moves from A to B. The units of potential difference are joules per coulomb, or volts; $1 \mathrm{~J} / \mathrm{C}=1 \mathrm{~V}$.

- The electric potential difference between two points, A and B, in a uniform electric field, E, is

$$
\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=-\mathrm{Ed}
$$

where d is the distance between A and B, and E is the strength of the electric field in that region.

- The electric potential due to a point charge, q, at distance r from the point charge is

$$
V=k \frac{q}{r}
$$

- The electrical potential energy of a pair of point charges separated by distance r is

$$
P E=k \frac{q_{1} q_{2}}{r}
$$

- Every point on the surface of a charged conductor in electrostatic equilibrium is at the same potential. Firthermore, the potential is constant everywhere inside the conductor and equal its value on the surface.
- The electron volt is defined as the energy that an electron (or proton) gains when accelerated through a potential difference of 1 V . The conversion between electron volts and joules is $1 \mathrm{eV}=1.602 \mathrm{x}$ 10^{-19} joules.
- A capacitor consists of two metal plates with charges that are equal in magnitude but opposite in sign. The capacitance (C) of any capacitor is the ratio of the magnitude of the charge, Q , on either plate to the potential difference, $\Delta \mathrm{V}$, between them:

$$
\mathrm{C}=\frac{\mathrm{Q}}{\Delta \mathrm{~V}}
$$

Capacitance has the units coulombs per volt, or farads; $1 \mathrm{C} / \mathrm{V}=1 \mathrm{~F}$.

- The capacitance of two parallel metal plates of area A separated by distance d is

$$
\mathrm{C}=\varepsilon_{0} \frac{\mathrm{~A}}{\mathrm{~d}}
$$

where ε_{0} is a constant called the permittivity of free space, with the value $8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$.

- The equivalent capacitance of parallel capacitors is

$$
\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\cdots
$$

and the equivalent capacitance of series capacitors is

$$
\frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\cdots
$$

- Three equivalent expressions for calculating the energy stored in a charged capacitor are

$$
\text { Energy stored }=\frac{1}{2} \mathrm{Q} \Delta \mathrm{~V}=\frac{1}{2} \mathrm{C}(\Delta \mathrm{~V})^{2}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}}
$$

- When a nonconducting material, called a dielectric, is placed between the plates of a capacitor, the capacitance is multiplied by the factor κ, which is called the dielectric constant and is a property of the dielectric material. The capacitance of a parallelplate capacitor filled with a dielectric is $\kappa \varepsilon_{0} A / d$.

