Summary of Chapter 20 - Induced Voltage and Inductance

Please read Chapter 20 carefully, and make sure that you understand the summary points below.

- The magnetic flux, Φ, through a planar surface is defined as

$$
\Phi=\mathrm{BA} \cos \theta
$$

where B is the strength of the uniform magnetic field, A is the cross-sectional area of the surface, and θ is the angle between \mathbf{B} and the direction perpendicular to the plane.

- Faraday's law of induction states that the instantaneous emf induced in a circuit equals the rate of change of magnetic flux through the circuit:

$$
\mathrm{emf}=-\frac{\Delta \Phi}{\Delta \mathrm{t}}
$$

where Φ is the flux through the surface enclosed by the circuit.

- Lenz's law states that the polarity of the induced emf is such that it produces a current whose magnetic field opposes the change in magnetic flux through the circuit.
- If a conducting bar of length C moves through a magnetic field with a speed, v, so that \mathbf{B} is perpendicular to the bar, the emf induced in the bar, often called a motional emf, is

$$
\mathrm{emf}=\mathrm{BLV}
$$

- When a coil of wire with N turns, each of area A , rotates with constant angular speed ω in a uniform magnetic field \mathbf{B}, the emf induced in the coil is
$\mathrm{emf}=\mathrm{NAB} \omega \sin \omega \mathrm{t}$
- When the current in a coil changes with time, an emf is induced in the coil according to Faraday's law. This selfinduced emf is defined by the expression

$$
\mathrm{emf}=-\mathrm{L} \frac{\Delta \mathrm{I}}{\Delta \mathrm{t}}
$$

where L is the inductance of the coil. The SI unit for inductance is the henry; $1 \mathrm{H}=1 \mathrm{Vs} / \mathrm{A}$.

- The inductance of a coil can be found from the expression

$$
\mathrm{L}=\frac{\mathrm{N} \Phi}{\mathrm{l}}
$$

where N is the number of turns on the coil, I is the current in the coil, and Φ is the magnetic flux through the coil produced by that current.

- RL circuit. If a resistor and inductor are connected in series to a battery and a switch is closed at $t=0$, the current in the circuit does not rise instantly to its maximum value. After one time constant, $\tau=\mathrm{L} / \mathrm{R}$, the current in the circuit is 63% of its final value, emf/R.
- The energy stored in the magnetic field of an inductor carrying current I is

$$
\mathrm{U}_{\mathrm{L}}=\frac{1}{2} \mathrm{LI}^{2}
$$

