Chapter 23 Summary - Mirrors and Lenses

- Images are formed where rays of light intersect or where they appear to originate. A real image is one in which light intersects, or passes through, an image point. A virtual image is one in which the light does not pass through the image point but appears to diverge from that point.
- The image formed by a flat mirror has the following properties:

1. The image is located an equal distance behind the mirror.
2. The image is unmagnified, virtual, and upright.

- The object distance p and image distance q for a spherical mirror of radius R are related by the mirror equation:

$$
\frac{1}{p}+\frac{1}{q}=\frac{1}{f}
$$

where $f=R / 2$ is the focal length of the mirror.

- The magnification, M, of a mirror is defined as the ratio of image height h' to the object height $\mathrm{h} ; \mathrm{M}$ is also equal to the ratio of image distance $(-q)$ to object distance p :

$$
\mathrm{M}=\frac{\mathrm{h}^{\prime}}{\mathrm{h}}=\frac{-\mathrm{q}}{\mathrm{p}}
$$

- The object distance p and image distances q for a thin lens are related by the thin-lens equation:

$$
\frac{1}{p}+\frac{1}{q}=\frac{1}{f}
$$

The sign conventions are listed in Table 23.3.

- The magnification for a thin lens is

$$
\mathrm{M}=\frac{\mathrm{h}^{\prime}}{\mathrm{h}}=\frac{|\mathrm{q}|}{|\mathrm{p}|}
$$

- Aberrations are responsible for the formation of imperfect images by lenses and mirrors. Spherical aberration results from the fact that the focal point of a light ray far from the principle axis is different from that of a light ray near the axis. Chromatic aberration arises from the fact that the index of refraction varies with the wavelength of light.

