PHY492: Nuclear & Particle Physics

Lecture 5

Angular momentum

Nucleon magnetic moments

Nuclear models

Orbital angular momentum

Orbital angular momentum, L

Classical:
$$\vec{L} = \vec{r} \times \vec{p}$$
; Quantum: $\vec{p} \to -i\hbar \nabla$, $L_z = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$

$$\vec{L}^2 \psi_{\ell m} = \ell (\ell + 1) \hbar^2 \psi_{\ell m}$$

$$L_z \psi_{\ell m} = m \hbar \psi_{\ell m} - \ell \le m \le \ell$$

eigenfunctions &
$$\vec{L}^2 \psi_{\ell m} = \ell (\ell + 1) \hbar^2 \psi_{\ell m}$$
 $L = \sqrt{\ell (\ell + 1)} \hbar$, ℓ an integer & $L_z \psi_{\ell m} = m \hbar \psi_{\ell m} - \ell \le m \le \ell$
$$L_z \text{ takes } (2\ell + 1) \text{ possible values}$$

$$\sqrt{\ell(\ell+1)}\hbar > \ell\hbar$$
, therefore $L > L_z = m\hbar$

Coordinate representation if angular distributions are desired

Spherical Harmonics:

$$\psi_{\ell_m} = Y_{\ell_m}(\theta, \phi) = f_{\ell_m}(\theta) e^{im\phi}$$
 $L_z = -ih\frac{\partial}{\partial \phi}$

$$L_z = -ih\frac{\partial}{\partial \phi}$$

Matrix representation if only eigenvalues are of interest

eigenstates & eigenvalues:

$$ec{L}^{2} | \ell, m \rangle = \ell (\ell + 1) \hbar^{2} | \ell, m \rangle$$
 $L_{z} | \ell, m \rangle = m \hbar | \ell, m \rangle$

Spin angular momentum

Many "elementary" particles, e.g., electron and neutrino, carry one half unit (\hbar) of angular momentum known as "spin". With no spatial dimension, nothing is "spinning" or orbiting. Protons and neutrons are spin 1/2, therefore, nuclei can have s=1/2 integer. Matrix representation

 $|\vec{S}^2|s,m_s\rangle = s(s+1)\hbar^2|s,m_s\rangle$

$$S_z | s, m_s \rangle = m_s \hbar | s, m_s \rangle$$

Fermi-Dirac statistics $s = \frac{1}{2}, m_s = \pm \frac{1}{2}$

$$s = \frac{1}{2}, 1, \frac{3}{2}...; -s \le m_s \le s$$

Angular momentum coupling

Nuclear energy levels have an L · S component:

$$\vec{J} = \vec{L} + \vec{S}$$

Eigenvalues

$$|\ell - s| \le j \le |\ell + s|$$

$$J^{2} | \ell, s, j, m_{j} \rangle = j(j+1)\hbar^{2} | \ell, s, j, m_{j} \rangle$$

$$L^{2} | \ell, s, j, m_{j} \rangle = \ell(\ell+1)\hbar^{2} | \ell, s, j, m_{j} \rangle$$

$$S^{2} | \ell, s, j, m_{j} \rangle = s(s+1)\hbar^{2} | \ell, s, j, m_{j} \rangle$$

$$J_{z} | \ell, s, j, m_{j} \rangle = m_{j}\hbar | \ell, s, j, m_{j} \rangle$$

$$\vec{J}^{2} = \vec{L}^{2} + \vec{S}^{2} + 2\vec{L} \cdot \vec{S}$$
$$\vec{L} \cdot \vec{S} = \frac{1}{2} (\vec{J}^{2} - \vec{L}^{2} - \vec{S}^{2})$$

Expectation value of L·S

$$\langle \ell, s, j, m_j | \vec{L} \cdot \vec{S} | \ell, s, j, m_j \rangle$$

$$= \left\langle \ell, s, j, m_j \left| \frac{1}{2} \left(\vec{J}^2 - \vec{L}^2 - \vec{S}^2 \right) \right| \ell, s, j, m_j \right\rangle$$

$$= \frac{\hbar^2}{2} \left\{ j(j+1) - \ell(\ell+1) - s(s+1) \right\}$$

Nucleon spin and magnetic moments

Classical energy of magnetic dipole in a magnetic field: $U = -\vec{\mu} \cdot \vec{B}$

$$\mu = IA \qquad \left(\vec{\mu} = \frac{I}{c}\vec{A}\right)_{\text{cgs}}$$

$$\mu = IA = \frac{qv}{2\pi r} (\pi r^2) = \frac{q}{2m} mvr = \frac{q}{2m} L$$

$$I = \frac{qv}{2\pi r}; \quad A = \pi r^2$$

Orbital angular momentum: $L = n\hbar$, n = 0,1,2...

Quantum mechanics has only two values of for the projection of the magnetic dipole on the B axis, ± 1 .

$$U = \mp \mu B$$

Bohr

Bohr magneton:
$$\mu_B = \frac{e\hbar}{2m_e} \qquad \mu_B = \frac{e\hbar}{2m_ec}$$

$$(F = qvB)_{\rm SI} \qquad \left(F = qv\frac{B}{c}\right)_{\rm crs}$$

SI:
$$\mu_B = \frac{e\hbar}{2m_e} = \frac{e\hbar c}{2m_e c}$$

$$= \frac{(1.6 \times 10^{-19} \text{ C})(197 \times 10^{-15} \text{ MeV} \cdot \text{m})}{2(9.1 \times 10^{-31} \text{ kg})(3 \times 10^8 \text{ m/s})}$$
smaller = $5.8 \times 10^{-11} \text{ MeV/T}$

Nuclear magneton:
$$\mu_N = \frac{e\hbar}{2m_p} = \frac{m_e}{m_p} \mu_B$$
 2000 times smaller than Bohr magneton
$$= 5.8 \times 10^{-11} \text{ MeV/T}$$

$$= 9.3 \times 10^{-24} \text{A} \cdot \text{m}^2 \text{ (MKS)}$$

Magnetic dipole moment associated with point-like particles with spin

$$\vec{\mu} = \frac{e}{2m} g \vec{S}$$

Landé g factor:
$$gS = \hbar$$

Landé g factor: $gS = \hbar$ A spin 1/2 particle with a magnetic moment (Landé) $S = \hbar/2$ g = 2 g-factor not close to 2, implies internal structure.

Anomalous magnetic moments of proton and neutron

Spin of proton and neutron are 1/2

Prediction for point-like particles

$$\mu_p = \mu_N = 3.15 \times 10^{-14} \text{ MeV/T}$$
 $\mu_n = 0 \text{ (no charge)}$

Quark model of nucleons

u-quark charge = +2/3 e d-quark charge = -1/3 e

Assuming magnetic moments of the u and d quarks are

u-quark
$$\mu_u = +1.86 \mu_N$$

d-quark $\mu_d = -0.93 \mu_N$

Measured values

$$\mu_p = 2.79 \; \mu_N$$

$$\mu_n = -1.91 \; \mu_N$$
 Mighty anomalous!

Nucleon quark content

proton =
$$2u + 1d$$

neutron = $1u + 2d$

Predictions of quark model

$$\mu_p = \frac{4}{3}\mu_u - \frac{1}{3}\mu_d = 2.79$$

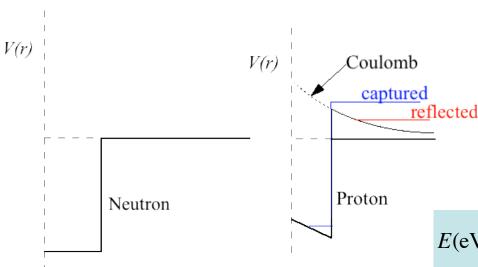
$$\mu_n = \frac{4}{3}\mu_d - \frac{1}{3}\mu_u = -1.86$$

Nuclear phenomenology

- Strong vs. Coulomb forces
- Liquid drop model
 - Binding energy parameterization
- Fermi-gas effects
 - Justification for terms in Liquid Drop, and Shell models
- · Shell model potential
 - Infinite square well
 - Harmonic oscillator
 - Spin-Orbit
- · Collective model
 - Heavy nuclei

The nuclear potential

Character of the nuclear potential



Coulomb force due to exchange of a γ

$$V(r) \propto \frac{1}{r}$$
 Long range

Coulomb Potential energy of two protons 1 fm apart

$$E(eV) = \frac{e}{4\pi\varepsilon_0 r} = (9 \times 10^9 \text{ Nm}^2 / \text{C}^2) \frac{1.6 \times 10^{-19} \text{ C}}{1 \times 10^{-15} \text{ m}}$$
$$= 1.4 \times 10^6 \text{ eV} = 1.4 \text{ MeV}$$

Yukawa (strong nuclear) potential

$$V(r) \propto \frac{e^{-\frac{mc}{\hbar}r}}{r}$$

 $V(r) \propto \frac{e^{-\frac{mr}{\hbar}r}}{r}$ Short range: down by 1/e at the nucleon surface

Strong nuclear force results from the exchange of a massive particle

$$mc^{2} = \frac{\hbar c}{r} = \frac{200 \text{ MeV} \cdot 10^{-15} \text{m}}{1.2 \times 10^{-15} \text{m}}$$

 $\approx 160 \text{ MeV}$

Liquid drop model

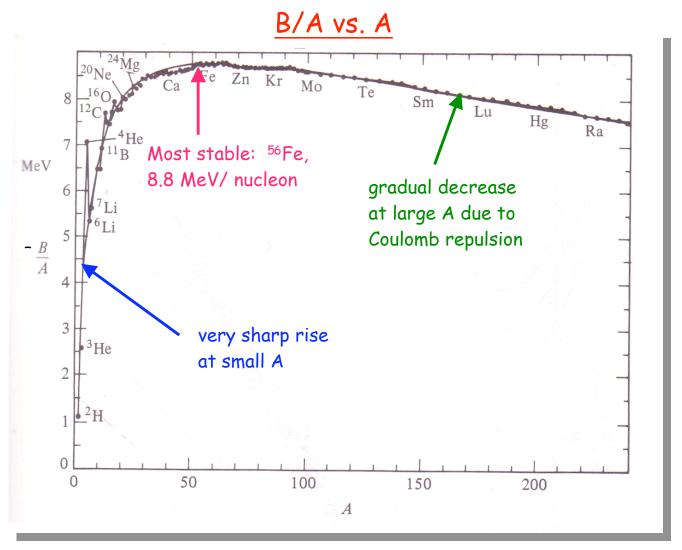
Five terms (+ means weaker binding) in a prediction of the B.E.

- $r \sim A^{1/3}$, Binding is short ranged, depending only on nearest neighbors. This leads to a B.E. term proportional to A: $-a_1 A$.
- The surface nucleons are not surrounded by others. This leads to a term proportional to $A^{2/3}$ that weakens the B.E.: $+a_2 A^{2/3}$.
- Coulomb repulsion of the protons. This leads to a term proportional to Z^2/r that weakens the binding energy: $+a_3(Z^2/A^{1/3})$.
- Orderly mix of p and n favors equal number of nucleons, but dilutes at big A. This leads to a B.E. term: $+a_4$ (N-Z)²/A.
- Spin effects favor even numbers of protons or neutrons, but dilutes at big A. This leads to a term: $\pm a_5 \ 1/A^{3/4}$ (Z,N)
 - + (odd,odd), for (even,even), O for (even,odd) or (odd,even)

$$B.E.(A,Z) = -a_1A + a_2A^{2/3} + a_3Z^2A^{-1/3} + a_4(2Z - A)^2A^{-1} \pm a_5A^{-3/4}$$

in MeV:
$$a_1 \approx 15.6$$
, $a_2 \approx 16.8$, $a_3 \approx 0.72$, $a_4 \approx 23.3$, $a_5 \approx 34$

Binding energy per nucleon



tabularized binding energies and masses - http://ie.lbl.gov/toimass.html