Lecture 26

Particle detectors
Particle identification
Accelerators I
Silicon detectors, silicon strip detectors

Single sided w/capacitive readout

CDF Silicon VerteX

- Inaccessible for years! "Robust"
- Other detector concepts
 - Double sided or drift laterally
 - Pixels w/bump bonding to readout
- Radiation damage a major concern
- Replace silicon crystal with diamond
Scintillator basics

- Rutherford used scintillation
 - ZnS screen - flashes
 - Eyes were photo detectors
- Photo-multiplier tube (PMT)

Photocathode Q.E.
Scintillators

- **Inorganic (high output, slow)**
 - Crystals NaI, CsI, BaF₂
 - Glasses PbWO₄, Ba₄Ge₃O₁₂
 - Cryogenic liquids LAr (UV)
 - all are temperature dependent!

- **Organic (low output, fast fluorescence)**
 - monocrystals naphthalene, anthracene
 - solvents (mineral oil) + waveshifters
 - plastic + waveshifters + polymerization
 - fluorescence in UV, must be waveshifted
Calorimeters

- **Electro-magnetic shower (Lecture 12)**
 - Pair production / Bremsstrahlung
 - Energy deposited as ionization

- **Total absorption calorimeter**
 - Crystals for photons & electrons
 - Liquid Argon ionization & tracking for electromagnetic and hadronic

- **Sample fixed % of ionization**

- **EM sampling calorimeters (15%)**
 - Pb plates ($0.5X_0 = 3$ mm)
 - Scintillator/LAr filler (4-6mm)

- **Hadronic sampling calorimeters (5%)**
 - Fe plates (6-10 mm, length = 2m)
 - Scintillator/LAr filler (6mm)
Particle ID techniques

Time of flight

\[\frac{\delta m}{m} = \gamma^2 \frac{\delta t}{t}; \]

Fermilab's CDF parameters:

\[t_c = 5 \text{ ns}; \quad \delta t = 0.1 \text{ ns}; \quad \frac{\delta t}{t} \sim 0.05 \]

\[\gamma = \frac{E}{m} \sim 3; \quad \frac{\delta m}{m} = 9 \left(0.05\right) = 45\% \]

\[E_\pi \leq 0.5 \text{ GeV}; \quad E_K \leq 1.5 \text{ GeV}; \quad E_p \leq 3 \text{ GeV} \]

separate: \(e/\pi/\overline{K}/p \) \(e\pi/\overline{K}/p \) \(e\pi K/p \)

Ionization sampling

Cerenkov radiation

\[\beta \geq \beta_{thr} = \frac{1}{n} \]

\[n : \text{refractive index} \]

\[l_{\text{light}} = (c/n)\Delta t \]

\[l_{\text{part}} = \beta c \Delta t \]

\[\cos \theta_C = \frac{1}{n\beta} \]

with \(n = n(\lambda) \geq 1 \)
Accelerators - particle sources

- Ion sources
 - Positive ions (e.g., H\(^+\), Au\(^{79}\))
 - Negative ions (H\(^-\)) for injection into positive beams

- DC e-guns: 50-500 kV acceleration
 - thermionic emission (grid pulsed)
 - laser pulse on photocathode

- RF e-guns
 - cathode one wall of an RF cavity
 - >10 MeV, low “emittance” beams

- Positron sources
 - photon conversions (\(\gamma \rightarrow e^+e^-\))
 - 20 GeV to >100 GeV electrons

- Antiproton sources
 - 120 GeV proton collisions, Li lens.
Accelerators - Linear accelerator (Linac)

- **Drift tube (Alvarez) linac**
 - Fermilab’s
 - 201 MHz
 - 116 MeV Linac

- **RF cavity linac**
 - Fermilab’s
 - 805 MHz
 - 400 MeV Linac
Cyclotrons

• Continuous beam cyclotron

 Constant frequency

 \[p = mv = 0.3qBR \]

 \[\omega = \frac{v}{R} = \frac{0.3qB}{m} \quad (m \text{ in GeV/c}^2) \]

• Relativistic cyclotron

 \[\omega \text{ depends on } v \text{ and } R \]

 \[\rightarrow \text{ pulse or } B(r) \]

 \[p = \gamma mv = 0.3qBR \]

 \[\omega = \frac{v}{R} = \frac{0.3qB}{\gamma m} \quad (m \text{ in GeV/c}^2) \]

\[q = 1, \quad p = 2 \text{ GeV/c}, \quad R = 1m \]

\[B = \frac{p}{0.3R} = \frac{2}{0.3(1)} = 6.7 \text{ T} = 67 \text{ kgauss} \]

Needs superconducting magnet!
Quadrupoles

For positive particles moving into the page, Quadrupole magnet below will focus in the vertical plane and defocus in the horizontal plane.

Quadrupole doublets, second rotated 90° wrt the first

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

is positive for a large range of focal lengths and $d \Rightarrow \text{net focusing both radially and vertically}$

V-Focus

H-Defocus

horizontal

vertical