

Hot-plate model of stars

- Q1 What quantities determine to a great extent the total amount of light that stars, the sun, a hot plate, and I emit?
 - Composition
 - Temperature
 - Size
 - a. C&T
 - b. T & S
 - c. S & C
 - d. All 3

Orion constellation http://lithops.as.arizona.edu/~jill/EPO/Posters/Orion/protoplanets.html

Hot-plate Model of a Star

- A hot plate emits light as a blackbody. The key parame

- flux, the amount of energy we on Earth receive per second per area of telescope.
- Reasoning process:
 - If the temperature is hotter, the flux is ____ (greater or less).

- Q2: Should T, D, & R be in the numerator or denominator?
- a. NNN
- b. NND
- c. NDN
- d. DNN

Hot-plate Model of a Star

- A hot plate emits light as a blackbody. The key parameters are
 - Temperature
 - Area
- A star is a really hot and really big hot plate.
- Ingredients
 - Radius: R. Area= 4π R²
 - · Temperature: T
 - · Distance: D
- · Hot plate model for flux

$$F = R^2 T^4 / D^2$$

Flux = Radius² Temp⁴ / Dist²

- Q2: Should T, D, & R be in the numerator or denominator?
 - a. NNN
 - b. NND
 - c. NDN
 - d. DNN

Hot-plate Model of a Star

· A Hot plate model for flux

$F = R^2 T^4 / D^2$

Flux = Radius² Temp⁴ / Dist²

- We measure flux incident on detector on Earth
 - Energy/unit time /unit area
- Luminosity is a quantity intrinsic to the star
 - Energy/unit time
 - Independent of distance to earth.

$L = R^2 T^4$

 To find luminosity of a star, we need to measure its distance. (This is difficult.)

- Q3: A giant hand moved Betelgeuse closer. Its flux and luminosity would be___?
 - a. Bigger & bigger
 - b. Bigger & same
 - c. Same & same

- Prof. Pickering's Team in 1913, from Barbara L. Welther, 1982, Isis 73, 94.
- AJC
 - BA, Wellesley, 1884
 - Pickering's assistant, 1896
 - Henry Draper catalog of stars, 1918-1924
 - Astronomer 1938

Stellar spectral types

• A Temperature Sequence

Туре	Temperature
0	>30,000
В	10,000-30,000
Α	7500-10,000
F	6000-7500
G	5000-6000
K	3500-5000
М	<3500

in K

Extra-Credit for best OBAFGKM mnemonic.

- 3 clicker points for entering.
- 3 clicker points for 10 best answers that can be repeated in class.
- Enter in Angel before 31 March.

Observed properties of stars

- Mass
 - Measured in kg or M_⊙
 - 0.08-30 M_☉
- Surface temperature
 - 5800K for sun
 - 3000 K for cool star
- Luminosity is amount of energy the star produces in a second
 - Watts=Joules/s or L_⊙
 - 40,000L_☉ for Betelgeuse
- Flux or apparent brightness is amount of energy received from the star by a detector in a second.
 - · Depends on distance
- Composition: abundances of elements.

Orion constellation http://lithops.as.arizona.edu/~jill/EPO/Posters/Orion/protoplanets.html

