Your code is: AABDJE

Put your name here:

Keep this exam CLOSED until advised by the instructor.
Fill out the bubble sheet: last name, first initial, student number, section number and code.

60 minute long closed book exam.
A two-sided 8.5 by 11 handwritten help sheet is allowed.
When done, hand in your bubble sheet and your exam.
Possibly useful constants:

- $\mathrm{k}_{e}=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
- $\epsilon_{0}=8.85 \times 10^{-12} \mathrm{As} /(\mathrm{Vm})$
- $\mu_{0}=4 \pi \times 10^{-7} \mathrm{Vs} /(\mathrm{Am})$
- $\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- $\mathrm{e}=1.60 \times 10^{-19} \mathrm{C}$
- $\mathrm{m}_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
- $\mathrm{m}_{e} \mathrm{c}^{2}=0.511 \mathrm{MeV}$
- $\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}$
- $\mathrm{h}=4.14 \times 10^{-15} \mathrm{eVs}$
- $\mathrm{hc}=1240 \mathrm{eVnm}$
- $\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)$
- Wien's constant $=2.898 \times 10^{-3} \mathrm{Km}$
- $\mathrm{R}_{H}=1.097 \times 10^{7} 1 / \mathrm{m}$
- $\mathrm{E}_{0}=13.6 \mathrm{eV}$
- $\mathrm{a}_{0}=0.529$ Angstrom
- $1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$
- $1 \mathrm{AMU}(1 \mathrm{u})=931.494 \mathrm{MeV} / \mathrm{c}^{2}=1.67 \times 10^{-27} \mathrm{~kg}$
- \times Field directly into page.
- - Field directly out of page

CODE - AABDJE - PHY232C, Summer 2006 - Virtual
University Physics 2
Name:
$12 p t$ Select True or False for the following questions about radioactive decay.
\triangleright In alpha decay, a neutron is emitted.

1. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright In gamma decay, a positron is emitted.
2. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright In beta decay, an electron or a positron is emitted.
3. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

6 pt
A projectile is observed during a very short time of 1.1
$\cdot 10^{-24} \mathrm{~s}$? What is its minimum energy uncertainty in nJ ?

$$
\begin{array}{rlll}
\mathbf{4 . A} \bigcirc 1.01 \times 10^{-2} & \mathbf{B} \bigcirc 1.26 \times 10^{-2} & \mathbf{C} \bigcirc 1.57 \times 10^{-2} \\
\mathbf{D} \bigcirc 1.96 \times 10^{-2} & \mathbf{E} \bigcirc 2.45 \times 10^{-2} & \mathbf{F} \bigcirc & 3.07 \times 10^{-2} \\
\mathbf{G} \bigcirc 3.83 \times 10^{-2} & \mathbf{H} \bigcirc 4.79 \times 10^{-2} & &
\end{array}
$$

$7 p t$ If the binding energy per nucleon of a fictitious nucleus with $\mathrm{Z}=\mathrm{N}=90$ is 7.4 MeV , what is its mass in u ?
The mass of a proton is 1.007276 u .
The mass of a nuetron is 1.008665 u .
5.A $\bigcirc 171.00$
$\mathbf{B} \bigcirc 173.70$
$\mathbf{C} \bigcirc 176.40$
$\mathbf{D} \bigcirc 180.00 \quad \mathbf{E} \bigcirc 181.43 \quad \mathbf{F} \bigcirc 182.86$
$\mathbf{G} \bigcirc 186.52 \quad \mathbf{H} \bigcirc 192.12$

12 pt Select True or False for the following statements.
\triangleright The speed of electromagnetic waves in vacuum is not proportional to their wavelength.
6. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright Sunlight perpendicularly strikes two surfaces of equal area. One surface is a perfect absorber and the other surface is a perfect reflector. The force exerted by the sunlight on the absorbing surface is twice the size of the force exerted by the sunlight on the reflecting surface.
7. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright A wire carries a steady current $\mathrm{i}=\mathrm{I}_{0}$. There is no electromagnetic radiation from the wire.

8. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

$7 p t$ What is the wavelength of radiation emitted when an electron goes from the $\mathrm{n}=6$ to the $\mathrm{n}=5$ level of the Bohr hydrogen atom? Give your answer in nm .

$\mathbf{9 . A} \bigcirc 7459.89$	$\mathbf{B} \bigcirc 9324.87$	$\mathbf{C} \bigcirc 11656.08$	
$\mathbf{D} \bigcirc 14570.10$	$\mathbf{E} \bigcirc 18212.63$	$\mathbf{F} \bigcirc 22765.79$	
$\mathbf{G} \bigcirc 28457.23$	$\mathbf{H} \bigcirc 35571.54$		

7 pt The age of a piece of wood from an archeological site is to be determined using the Carbon-14 method. The activity of the sample is measured to be 0.432 times the Carbon- 14 activity of living plants. What is the age of the sample in years? (The half-life of the Carbon-14 isotope is 5730 years.)

$$
\begin{array}{rlll}
\mathbf{1 0 . A} \bigcirc 4.26 \times 10^{3} & \mathbf{B} \bigcirc 4.81 \times 10^{3} & \mathbf{C} \bigcirc 5.43 \times 10^{3} \\
\mathbf{D} \bigcirc 6.14 \times 10^{3} & \mathbf{E} \bigcirc 6.94 \times 10^{3} & \mathbf{F} \bigcirc & 7.84 \times 10^{3} \\
\mathbf{G} \bigcirc 8.86 \times 10^{3} & \mathbf{H} \bigcirc 1.00 \times 10^{4} & &
\end{array}
$$

$12 p t$ Select True or False for each of the following statements.
\triangleright In the quantum mechanical hydrogen atom, electrons in the $\mathrm{n}=2$ orbit all have the same angular momentum.
11. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright The work function of a surface determines the minimum intensity of light which will cause electrons to be emitted.
12. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright If the temperature (in K) of a black-body increases by a factor of two, then the emitted power increases by a factor of two.
13. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
$12 p t$ For each statement below, select True or False.
\triangleright When a diffraction grating is illuminated by white light, the first order maximum for yellow light is farther away from the central maximum than the first order maximum for blue light.
14. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright Red light strikes two narrow slits and an inteference pattern is observed on a screen. As the distance separating the two narrow slits is decreased, the interference pattern observed on the screen will get wider.
15. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright As the wavelength of light hitting a single slit is increased, the diffraction pattern observed on a screen will get wider.
16. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

CODE - AABDJE - PHY232C, Summer 2006 - Virtual
University Physics 2
Exam 4
Name:
$6 p t$

A pair of slits separated by 1.2 mm , are illuminated with monochromatic light of wavelength 680 nm . The light falls on a screen 2.5 m away producing an interference pattern. A piece of glass with index of refraction $\mathrm{n}=1.59$ is placed at one slit. Placing the piece of glass in front of the slit causes the maxima to shift $0.27 \delta \mathrm{x}$, where $\delta \mathrm{x}$ is the distance between adjacent maxima. What is the thickness of the glass in $\mu \mathrm{m}$?

$\mathbf{1 7 . A} \bigcirc$	0.142	$\mathbf{B} \bigcirc$	0.166	$\mathbf{C} \bigcirc 0.194$	$\mathbf{D} \bigcirc 0.227$
$\mathbf{E} \bigcirc 0.266$	$\mathbf{F} \bigcirc$	0.311	$\mathbf{G} \bigcirc 0.364$	$\mathbf{H} \bigcirc$	0.426

A soap film with air on both sides is made with material of index of refraction $\mathrm{n}=1.46$. It is illuminated by white light. If the reflected light is maximum at $\lambda=570 \mathrm{~nm}$, what is t , the minimum thickness (in nm) the film could have had?
$\mathbf{1 8 . A} \bigcirc 52.1$
$\mathbf{B} \bigcirc 60.9$
$\mathbf{C} \bigcirc 71.3$
$\mathbf{D} \bigcirc 83.4$
$\mathbf{E} \bigcirc 97.6$
$\mathbf{F} \bigcirc 114.2$
G \bigcirc
133.6
$\mathbf{H} \bigcirc 156.3$
$6 p t$ A flexible loop has a radius of 0.59 m and it is inside a constant magnetic field of 0.6 T . The resistance of the loop is 3.78Ω. The loop is grasped at points P and Q and stretched until its area is zero. It takes 0.123 seconds to close the loop.

$$
\begin{array}{|cccccc|}
\times \mathbf{B} & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times
\end{array}
$$

What is the average induced current (in amps) in the loop during the stretching process?

$\mathbf{1 9 . A} \bigcirc$	1.41	$\mathbf{B} \bigcirc$	1.59	$\mathbf{C} \bigcirc$	1.80
$\mathbf{D} \bigcirc$	2.04				
$\mathbf{E} \bigcirc 2.30$	$\mathbf{F} \bigcirc$	2.60	$\mathbf{G} \bigcirc 2.94$	$\mathbf{H} \bigcirc$	3.32

$6 p t$ The figure shows three charges Q1, Q2 and Q3 fixed in place at the corners of an equilateral triangle. The length of each side of the triangle is 14.5 cm . Recall that all of the interior angles of an equilateral triangle are 60°.

For $\mathrm{Q} 1=17.80 \mu \mathrm{C}, \mathrm{Q} 2=-17.80 \mu \mathrm{C}$, and $\mathrm{Q} 3=8.40 \mu \mathrm{C}$ find the net electrostatic force acting on charge Q3.
(in N)

$$
\begin{array}{rlll}
\mathbf{2 0 . A} \bigcirc 5.01 \times 10^{1} & \mathbf{B} \bigcirc 5.66 \times 10^{1} & \mathbf{C} \bigcirc 6.40 \times 10^{1} \\
\mathbf{D} \bigcirc 7.23 \times 10^{1} & \mathbf{E} \bigcirc & 8.17 \times 10^{1} & \mathbf{F} \bigcirc 9.24 \times 10^{1} \\
\mathbf{G} \bigcirc 1.04 \times 10^{2} & \mathbf{H} \bigcirc 1.18 \times 10^{2} & &
\end{array}
$$

