
PHY492: Nuclear & Particle Physics

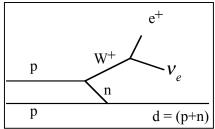
Lecture 11
Exam 1
Elementary Particle Physics

Exam 1

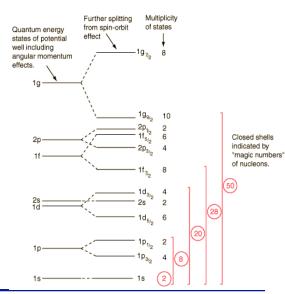
- 4) The numbers are the Magic #'s of the Shell model
 - a) Shell Model with a $L \cdot S$ term in the potential correctly predicts the magic #'s
 - b) Nuclei in black are the stable nuclei
 - c) Curvature downward indicates <u>large A nuclei have larger N than Z</u>
 - d) The SEMF predicts N>Z at large A, because protons are on average further apart leading to a weaker Coulomb repulsion, stronger binding, and lower mass.
- 5) Decay reactions of the blue, pink and yellow colors

blue:
$$+\beta$$
 decay

$$A X^Z \rightarrow A Y^{Z-1} + e^+ + v_e$$


pink: $-\beta$ decay

yellow: α decay


Exam 1

6) Weak reaction in the sun before hydrogen fusion can proceed

$$pp \rightarrow np + e^+ + v_e$$

- 8) SEMF: $Mc^2 = a_0 a_1 A + a_2 A^{\frac{2}{3}} + a_3 Z^2 A^{-\frac{1}{3}} + a_4 (N Z)^2 A^{-1} \pm a_5 A^{-\frac{3}{4}}$
 - a) + sign for odd N, odd Z, (2 unpaired nucleons lead to weakest binding)
 - b) sign for even N, even Z, (pairing leads to strongest binding)
 - c) 0 for even N, odd Z or odd N, even Z (partial pairing average binding)
- 9) 14 O, 16 O, 18 O, (all even-even nuclei are $J^p = 0^+$)
 - ¹⁵O, $1p_1$, $J^P = \frac{1}{2}^-$ (*p*-states have $\ell = 1$, and P = -)
 - ¹⁷O, $1d_{5/2}$, $J^P = \frac{5}{2}^+$ (*d*-states have $\ell = 2$, and P = +)
 - ¹⁹O, $1d_{5/2}$, $J^P = \frac{5}{2}^+$ (*d*-states have $\ell = 2$, and P = +)

Leptonic (point-like) particles of the Standard Model

- Lepton "flavors" (s = 1/2)
 - Electric Q = -e
 - Flavor states
 - e^{-} , electron, mass = 0.511 MeV/ c^{2}
 - μ , muon, mass = 105 MeV/c²
 - $-\tau^{-}$, tau, mass = 1.77 GeV/c²
 - Electric Q = 0 (s= 1/2, left-handed) Electric Q = 0 (right-handed)
 - Flavor states
 - v_e , electron neutrino
 - v_{μ} , muon neutrino
 - v_{τ} , tau neutrino
 - Mass states
 - V_1, V_2, V_3 $(m < 0.2 \text{ eV/c}^2)$

- Anti-Lepton "flavors" (s = 1/2)
 - Electric Q = +e
 - Flavor states
 - e^+ , positron (e-plus)
 - μ⁺, mu-plus
 - τ^+ , tau-plus
 - - Flavor states
 - anti-v_e, anti-electron neutrino
 - anti- v_{μ} , anti-muon neutrino
 - anti- v_{τ} , tau neutrino
 - Mass states
 - anti- v_1 , anti- v_2 , anti- v_3
- Also written as

$$e^+,~\mu^+,~ au^+$$

$$\overline{V}_e, \ \overline{V}_\mu, \ \overline{V}_\tau$$

Quarks (point-like), hadronic particles of the Standard Model

- Quark "flavors" (spin = 1/2)
 - Electric charge Q = +2/3e
 - u, up, mass ~ 3 MeV/ c^2
 - c, charm, mass ~ 1.2 GeV /c²
 - t, top, mass ~ 175 GeV /c²
 - Electric charge Q = -1/3e
 - d, down, mass ~ 7 MeV/c²
 - s, strange, mass ~ 120 MeV/c²
 - b, bottom, mass ~ 4.2 GeV/c²

- Anti-Quark "flavors" (spin = 1/2)
 - Electric charge Q = -2/3e
 - *u-bar*, anti-up
 - c-bar, anti-charm
 - *t-bar*, anti-top
 - Electric charge Q = +1/3e
 - · d-bar, anti-down
 - s-bar, anti-strange
 - b-bar, anti-top
- Also written as

$$\overline{u}$$
, \overline{c} , \overline{t}

$$\bar{d}$$
, \bar{s} , \bar{b}

Long-lived hadronic composites: Baryons

Q = -2/3

Quark flavors

$$Q = +2/3 \qquad u \qquad c \qquad t$$

$$Q = -1/3 \qquad d \qquad s \qquad b$$

Anti-Quark flavors

\overline{u}	\overline{c}	\overline{t}
\bar{d}	S	\overline{b}

- Hadrons (colorless quark combinations)
 - Baryons: three quarks, each with a QCD color (Q = -1 to +2e, spin = 1/2, 3/2)

light quarks
$$u,d$$
: $p(uud)$ $n(udd)$ $s = 1/2$ $\Delta^{++}(uuu)$ $\Delta^{+}(uud)$ $\Delta^{0}(udd)$ $\Delta^{-}(ddd)$ $s = 3/2$

s:
$$\Omega^{-}(sss) = 3/2$$

$$\Xi^{0}(uss) \quad \Xi^{-}(dss)$$

$$\Sigma^{+}(uus) \quad \Sigma^{0}, \Lambda^{0}(uds) \quad \Sigma^{-}(dds)$$

heavy quarks
$$c,b$$
: $\Omega_c^0(ssc)$ no u,d
$$\Xi_c^+(usc) \quad \Xi_c^0(dsc) \quad \text{1 u,d}$$

$$\Sigma_c^{++}(uuc) \quad \Sigma_c^+, \Lambda_c^+(udc) \quad \Sigma_c^0(ddc) \quad \text{2 u,d}$$

similarly with b quark

NO top baryons Top quark is too short lived

Long-lived hadronic composites: Mesons

Q = -2/3

Q = +1/3

Quark flavors

$$Q = +2/3$$

$$U$$

$$C$$

$$t$$

$$Q = -1/3$$

$$d$$

$$S$$

$$b$$

Anti-Quark flavors

\overline{u}	\overline{c}	\overline{t}
\bar{d}	\overline{S}	\bar{b}

- Mesons: one quark, one anti-quark, color/anti-color (Q = -1 to +1e, integer spin)

light quarks
$$u,d,s$$
: $K^+(u\overline{s})$ K^0 $(d\overline{s})$

$$\pi^+(u\overline{d})$$
 $\pi^0(\frac{u\overline{u}-\overline{d}d}{\sqrt{2}})$ $\pi^-(d\overline{u})$ $\eta^0,\omega^0,\phi^0...c_1(\frac{u\overline{u}+\overline{d}d}{\sqrt{2}})+c_2(s\overline{s})$

$$\overline{K}^0(s\overline{d})$$
 $K^-(s\overline{u})$ short hand for $\frac{1}{\sqrt{2}}(|u\overline{u}\rangle+|d\overline{d}\rangle)$

$$s = 1 \quad \rho^+ \rho^0 \rho^-, K^{*+}, K^{*0}, \overline{K}^{*0}, K^{*-}$$

heavy quarks
$$c,b$$
: $D^+(\overline{d}c)$ $D^0(\overline{u}c)$ $D^+_S(c\overline{s})$ $D^-_S(\overline{c}s)$ $\overline{D}^0(u\overline{c})$ $D^-(d\overline{c})$ $\overline{D}^0(u\overline{b})$ $\overline{D}^0(d\overline{b})$ $\overline{B}^0(d\overline{b})$ $\overline{B}^0(b\overline{s})$ $\overline{B}^0(\overline{b}s)$ $\overline{B}^0(\overline{d}b)$

NO top mesons
Top quark is too short lived

"Stability" in elementary particle physics

- Hadronic particle lifetimes
 - Weak decay ~10⁻¹⁰ s

e.g.
$$\Lambda^0 \to p + \pi^- \qquad \pi^+ \to \mu^+ + \nu_\mu$$

- Electromagnetic decay ~10-16 s

e.g.
$$\pi^0 \to \gamma + \gamma$$
 $\Sigma^0 \to \Lambda^0 + \gamma$

- Strong decay ~10-23 s

e.g.
$$\Delta^{^{++}} \rightarrow p + \pi^{^+}$$
 $K^{^{*+}} \rightarrow K^{^+} + \pi^0$