CODE - AAFGHE - PHY231C, Summer 2006 - PHY231C - Introductory Physics I - Virtual University1EXAM 1Name:

CODE - AAFGHE - PHY231C, Summer 2006 - PHY 231C – Introductory Physics I – Virtual University *EXAM 1* Name:

Your code is: AAFGHE

Put your name here:

Keep this exam **CLOSED** until advised by the instructor.

60 minute long closed book exam.

Fill out the bubble sheet: last name, first initial, student number, section number and **code**.

A two-sided 8.5 by 11 handwritten help sheet is allowed.

When done, hand in your test and your bubble sheet.

Thank you and good luck!

Possibly useful constants:

- $g = 9.81 \text{ m/s}^2$
- G = $6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$
- $\sigma = 5.67 \times 10^{-8} \text{ W/(m^2 K^4)}$
- $R = 0.0821 L^*atm/(mol^*K) = 8.31 J/(mol^*K)$

Possibly useful Moments of Inertia:

- Solid homogeneous sphere: $I_{CM} = (2/5)MR^2$
- Thin spherical shell: $I_{CM} = (2/3)MR^2$
- Thin uniform rod, axis perpendicular to length: $I_{CM} = (1/12)ML^2$
- Solid homogeneous cylinder, axis through center of mass and parallel to length: $I_{CM} = (1/2)MR^2$

Useful information for Geometry:

- Volume of a sphere: $V = (4/3)\pi r^3$
- Volume of a cylinder: $V = \pi r^2 h$

 $\mathbf{2}$

CODE - AAFGHE - PHY231C, Summer 2006 - PHY 231C – Introductory Physics I – Virtual University 3 *EXAM 1* Name:

 $\triangleright vt/x = 42$ 1. A valid B invalid $\triangleright mv = 6mgt(1 + 2gt^2/x)$ 2. A valid B invalid $\triangleright m(x + vt)(gt + 1) = mgt^2/2$

3. \mathbf{A} valid \mathbf{B} invalid

9 pt A right cylinder has a radius r of 14.4 mm and a height h of 34.7 mm. What is the volume of the cylinder in cm³?

 $\left\lfloor \frac{8 \ pt}{100 \text{ km}} \right\rfloor$ Assume you are a medieval knight attacking a castle with a canon. The ball leaves the cannon with a speed of 32.9 m/s.

The barrel's angle with respect to the ground is 47.5 deg, and you make a perfect hit on the tyrant's chamber which is at the same level as the cannon's muzzle (H=0). What is the time of flight of the cannon ball? (in s)

5.A 1.58	B 〇 2.10	C 〇 2.80
$\mathbf{D}\bigcirc 3.72$	\mathbf{E} 4.95	$\mathbf{F}\bigcirc 6.58$
$\mathbf{G}\bigcirc 8.75$	$\mathbf{H}\bigcirc 1.16 \times 10^{1}$	

CODE - AAFGHE - PHY231C, Summer 2006 - PHY 231C – Introductory Physics I – Virtual University *EXAM 1* Name:

4

Consider an Atwood machine with $m_2 = 4.9$ kg. The acceleration of m_2 is measured to be 5.05 m/s² upward. DATA: g=9.81 m/s²

8 pt What is	the tension in	the rope? (a	in N)
6.A 〇 24.3	\mathbf{B} 28.4	C 〇 33.2	D 〇 38.9
\mathbf{E} 45.5	$F\bigcirc 53.2$	$\mathbf{G}\bigcirc 62.2$	H 〇 72.8

8 *pt* If the blocks are initially at rest, how far will m_2 have risen by 2.1 seconds? (*in* m)

7.A 11.14	B 13.92	C 〇 17.40	$\mathbf{D}\bigcirc~21.75$
E 〇 27.19	F 〇 33.98	$\mathbf{G}\bigcirc 42.48$	H 〇 53.10

- $\triangleright \text{ The acceleration is negative in region } \dots \dots \\ \textbf{8. A } AB \textbf{ B } CD \textbf{ C } DC \textbf{ D } EF$
- $\triangleright \text{ The acceleration is positive in region } ____.$ 9. A AB B CD CD C DE D EF
- $\triangleright \text{ The velocity is uniform and positive in region ____.}$ **10. A** \bigcirc AB **B** \bigcirc CD **C** \bigcirc DE **D** \bigcirc EF
- $\triangleright \text{ The velocity is uniform and negative in region _____.}$ **11. A** \bigcirc AB **B** \bigcirc CD **C** \bigcirc DE **D** \bigcirc EF

CODE - AAFGHE - PHY231C, Summer 2006 - PHY231C - Introductory Physics I - Virtual University5EXAM 1

Name:

<u>12 pt</u> Consider a projectile which strikes a target as shown below. Ignore all forces except gravity. Point A refers to a point just beyond the muzzle of the cannon, B refers to the highest point in the trajectory and C refers to a point just before landing on the cliff.

- \triangleright The horizontal component of the velocity at A is _____ than the horizontal component of the velocity at C.
- $\begin{array}{ccc} 12. & A \bigcirc {\rm \ greater \ than} & B \bigcirc {\rm \ less \ than} \\ & C \bigcirc {\rm \ equal \ to} \end{array}$
- $\triangleright \text{ The acceleration at } B \text{ is } ____ \text{ the acceleration at } C.$ **13. A** \bigcirc greater than **B** \bigcirc less than **C** \bigcirc equal to
- ▷ The vertical component of the velocity at B is ____ zero. **14.** A \bigcirc greater than B \bigcirc less than C \bigcirc equal to

 \triangleright The magnitude of the vertical component of the velocity at A is _____ the magnitude of the vertical component of the velocity at C

9 pt A fisherman catches a 20 lb trout (mass=9.072 kg), and takes the trout in an elevator to the 78th floor to impress his girl friend, who is the CEO of a large accounting firm. The fish is hanging on a scale, which reads 20 lb.s while the fisherman is stationary. Later, he returns via the elevator to the ground floor with the fish still hanging from the scale.

 \triangleright In the instance just before the elevator comes to a stop on the 78th floor, the reading on the scale will be _____ 20 lbs.

16. A \bigcirc greater than B \bigcirc less than C \bigcirc equal to

 \triangleright In the instant just before the elevator comes to a stop on the 78th floor, the mass of the fish will be _____ 9.072 kg.

17. A greater than B less than C equal to

 \triangleright On the way back down, while descending at constant velocity, the reading on the scale will be _____ 20 lbs.

18. \mathbf{A} greater than \mathbf{B} less than \mathbf{C} equal to

CODE - AAFGHE - PHY231C, Summer 2006 - PHY 231C – Introductory Physics I – Virtual University *EXAM 1* Name:

A 7.8 kg object hangs at one end of a rope that is attached to a support on a railroad car. When the car accelerates to the right, the rope makes an angle of 9.4 degrees with the vertical, as shown in the figure below.

$\fbox{8 pt}$ What is the tension in the rope in Newtons?					
19.A ○ 68.6 E ○ 111.9	B⊖ 77.6 F⊖ 126.5	$\begin{array}{c} \mathbf{C}\bigcirc 87.6\\ \mathbf{G}\bigcirc 142.9\end{array}$	0		
$\fbox{8 pt}$ What is the acceleration of the railroad car in m/s ² ?					
20.A ○ 0.39 E ○ 1.22	$\begin{array}{c} \mathbf{B}\bigcirc \ 0.52 \\ \mathbf{F}\bigcirc \ 1.62 \end{array}$	C○ 0.69 G○ 2.16	D ○ 0.92 H ○ 2.87		

<u>9 pt</u> An object is thrown directly downward from the top of a very tall building. The speed of the object just as it is released is 25.9 m/s. After being thrown, the object falls freely due to gravity. Neglect air resistance and calculate the distance, in meters which the object covers between times t1 = 2.86 s and t2 = 6 s after it is thrown.

21.A 116 **B** 136 **C** 159 **D** 186 **E** 218 **F** 255 **G** 298 **H** 349

Printed from LON-CAPA MSU

Licensed under GNU General Public License