Your code is: AAFGHE

Put your name here:

Keep this exam CLOSED until advised by the instructor.
60 minute long closed book exam.
Fill out the bubble sheet: last name, first initial, student number, section number and code.

A two-sided 8.5 by 11 handwritten help sheet is allowed.
When done, hand in your test and your bubble sheet.
Thank you and good luck!
Possibly useful constants:

- $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
- $\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)$
- $\mathrm{R}=0.0821 \mathrm{~L}^{*} \mathrm{~atm} /\left(\mathrm{mol}^{*} \mathrm{~K}\right)=8.31 \mathrm{~J} /\left(\mathrm{mol}^{*} \mathrm{~K}\right)$

Possibly useful Moments of Inertia:

- Solid homogeneous sphere: $\mathrm{I}_{C M}=(2 / 5) \mathrm{MR}^{2}$
- Thin spherical shell: $\mathrm{I}_{C M}=(2 / 3) \mathrm{MR}^{2}$
- Thin uniform rod, axis perpendicular to length: $\mathrm{I}_{C M}=$ $(1 / 12) \mathrm{ML}^{2}$
- Solid homogeneous cylinder, axis through center of mass and parallel to length: $\mathrm{I}_{C M}=(1 / 2) \mathrm{MR}^{2}$

Useful information for Geometry:

- Volume of a sphere: $\mathrm{V}=(4 / 3) \pi \mathrm{r}^{3}$
- Volume of a cylinder: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

CODE - AAFGHE - PHY231C, Summer 2006 - PHY
231 C - Introductory Physics I - Virtual University
Name:

9 pt From dimensional analysis considerations alone, mark these formulas as either 'valid' or 'invalid'. Assume that x has dimensions of distance, v has dimensions of velocity, t has dimensions of time, g has dimensions of acceleration and m has dimensions of mass.
$\triangleright \mathrm{vt} / \mathrm{x}=42$

1. $\mathbf{A} \bigcirc$ valid $\mathbf{B} \bigcirc$ invalid
$\triangleright \mathrm{mv}=6 \mathrm{mgt}\left(1+2 \mathrm{gt}^{2} / \mathrm{x}\right)$
2. $\mathbf{A} \bigcirc$ valid $\mathbf{B} \bigcirc$ invalid
$\triangleright \mathrm{m}(\mathrm{x}+\mathrm{vt})(\mathrm{gt}+1)=\mathrm{mgt}^{2} / 2$
3. $\mathbf{A} \bigcirc$ valid $\mathbf{B} \bigcirc$ invalid

9 pt A right cylinder has a radius r of 14.4 mm and a height h of 34.7 mm . What is the volume of the cylinder in cm^{3} ?

$4 . A \bigcirc 2.26 \times 10^{1}$
B 2.26×10^{2}
$\mathbf{C} \bigcirc 2.26 \times 10^{3}$
D 7.20×10^{3}
E $\bigcirc 2.26 \times 10^{4}$
$\mathbf{F} \bigcirc 2.26 \times 10^{5}$
G 2.26×10^{6}
$\mathbf{H} \bigcirc 2.26 \times 10^{7}$

8 pt Assume you are a medieval knight attacking a castle with a canon. The ball leaves the cannon with a speed of 32.9 m / s.

The barrel's angle with respect to the ground is 47.5 deg , and you make a perfect hit on the tyrant's chamber which is at the same level as the cannon's muzzle $(\mathrm{H}=0)$. What is the time of flight of the cannon ball?
(in s)
$\mathbf{5 . A} 1.58$
$\mathbf{B} \bigcirc 2.1$
$\mathbf{C} \bigcirc 2.80$
D〇 3.72
$\mathbf{E} \bigcirc 4.95$
$\mathbf{G} \bigcirc 8.75$
$\mathbf{H} \bigcirc 1.16 \times 10^{1}$

CODE - AAFGHE - PHY231C, Summer 2006 - PHY
231 C - Introductory Physics I - Virtual University
Name:

Consider an Atwood machine with $m_{2}=4.9 \mathrm{~kg}$. The acceleration of m_{2} is measured to be $5.05 \mathrm{~m} / \mathrm{s}^{2}$ upward.
DATA: $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
$8 p t$ What is the tension in the rope? (in N)

$$
\begin{array}{rllll}
\mathbf{6 . A} \bigcirc & 24.3 & \mathbf{B} \bigcirc 28.4 & \mathbf{C} \bigcirc 33.2 & \mathbf{D} \bigcirc 38.9 \\
\mathbf{E} \bigcirc 45.5 & \mathbf{F} \bigcirc & 53.2 & \mathbf{G} \bigcirc 62.2 & \mathbf{H} \bigcirc 72.8
\end{array}
$$

$8 p t$ If the blocks are initially at rest, how far will m_{2} have risen by 2.1 seconds? (in m)
7.A $\bigcirc 11.14$
$\mathbf{B} \bigcirc 13.92$
$\mathbf{C} \bigcirc 17.40$
D 21.75
$\mathbf{E} \bigcirc 27.19$
F〇 33.98
$\mathbf{G} \bigcirc 42.48$
$\mathbf{H} \bigcirc 53.10$

12 pt Consider the plot of position vs. time below.

\triangleright The acceleration is negative in region .-...
8. $\mathbf{A} \bigcirc \mathrm{AB} \quad \mathbf{B} \bigcirc \mathrm{CD} \quad \mathbf{C} \bigcirc \mathrm{DE} \quad \mathbf{D} \bigcirc \mathrm{EF}$
\triangleright The acceleration is positive in region \qquad
9. $\mathbf{A} \bigcirc \mathrm{AB} \quad \mathbf{B} \bigcirc \mathrm{CD} \quad \mathbf{C} \bigcirc \mathrm{DE} \quad \mathbf{D} \bigcirc \mathrm{EF}$
\triangleright The velocity is uniform and positive in region \qquad
10. $\mathbf{A} \bigcirc \mathrm{AB} \quad \mathbf{B} \bigcirc \mathrm{CD} \quad \mathbf{C} \bigcirc \mathrm{DE} \quad \mathbf{D} \bigcirc \mathrm{EF}$
\triangleright The velocity is uniform and negative in region ---..
11. $\mathbf{A} \bigcirc \mathrm{AB} \quad \mathbf{B} \bigcirc \mathrm{CD} \quad \mathbf{C} \bigcirc \mathrm{DE} \quad \mathbf{D} \bigcirc \mathrm{EF}$

CODE - AAFGHE - PHY231C, Summer 2006 - PHY
231 C - Introductory Physics I - Virtual University EXAM 1
Name:
$12 p t$ Consider a projectile which strikes a target as shown below. Ignore all forces except gravity. Point A refers to a point just beyond the muzzle of the cannon, B refers to the highest point in the trajectory and C refers to a point just before landing on the cliff.

\triangleright The horizontal component of the velocity at A is \qquad than the horizontal component of the velocity at C.
12. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
\triangleright The acceleration at B is _-_- the acceleration at C.
13. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
\triangleright The vertical component of the velocity at B is \qquad zero.
14. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
\triangleright The magnitude of the vertical component of the velocity at A is __-_ the magnitude of the vertical component of the velocity at C
15. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
$9 p t$ A fisherman catches a 20 lb trout (mass $=9.072 \mathrm{~kg}$), and takes the trout in an elevator to the 78 th floor to impress his girl friend, who is the CEO of a large accounting firm. The fish is hanging on a scale, which reads 20 lb.s while the fisherman is stationary. Later, he returns via the elevator to the ground floor with the fish still hanging from the scale.
\triangleright In the instance just before the elevator comes to a stop on the 78th floor, the reading on the scale will be \qquad lbs.
16. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than
$\mathbf{C} \bigcirc$ equal to
\triangleright In the instant just before the elevator comes to a stop on the 78th floor, the mass of the fish will be \qquad 9.072 kg.
17. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than
$\mathbf{C} \bigcirc$ equal to
\triangleright On the way back down, while descending at constant velocity, the reading on the scale will be \qquad 20 lbs.
18. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than
$\mathbf{C} \bigcirc$ equal to

20

CODE - AAFGHE - PHY231C, Summer 2006 - PHY

EXAM 1

Name:
A 7.8 kg object hangs at one end of a rope that is attached to a support on a railroad car. When the car accelerates to the right, the rope makes an angle of 9.4 degrees with the vertical, as shown in the figure below.

$8 p t$ What is the tension in the rope in Newtons?

| $\mathbf{1 9 . A} \bigcirc 68.6$ | $\mathbf{B} \bigcirc 77.6$ | $\mathbf{C} \bigcirc 87.6$ | $\mathbf{D} \bigcirc 99.0$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 111.9$ | $\mathbf{F} \bigcirc 126.5$ | $\mathbf{G} \bigcirc 142.9$ | $\mathbf{H} \bigcirc 161.5$ |

8 pt What is the acceleration of the railroad car in $\mathrm{m} / \mathrm{s}^{2}$?

$\mathbf{2 0 . A} \bigcirc$	0.39	$\mathbf{B} \bigcirc$	0.52	$\mathbf{C} \bigcirc 0.69$	$\mathbf{D} \bigcirc$

9 pt An object is thrown directly downward from the top of a very tall building. The speed of the object just as it is released is $25.9 \mathrm{~m} / \mathrm{s}$. After being thrown, the object falls freely due to gravity. Neglect air resistance and calculate the distance, in meters which the object covers between times t1 $=2.86 \mathrm{~s}$ and $\mathrm{t} 2=6 \mathrm{~s}$ after it is thrown.

$\mathbf{2 1 . A} \bigcirc$	116	$\mathbf{B} \bigcirc$	136	$\mathbf{C} \bigcirc 159$	$\mathbf{D} \bigcirc 186$
$\mathbf{E} \bigcirc$	218	$\mathbf{F} \bigcirc$	255	$\mathbf{G} \bigcirc$	298
$\mathbf{H} \bigcirc$	349				

Licensed under GNU General Public License

