CODE - AAGDDJ - PHY231C, Summer 2006 - PHY 231 C - Introductory Physics I - Virtual University EXAM 3
Name:

Your code is: AAGDDJ

Put your name here:

Keep this exam CLOSED until advised by the instructor.

60 minute long closed book exam.
Fill out the bubble sheet: last name, first initial, student number, section number and code.

A two-sided 8.5 by 11 handwritten help sheet is allowed.
When done, hand in your test and your bubble sheet.
Thank you and good luck!
Possibly useful constants:

- $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
- $\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)$
- $\mathrm{R}=0.0821 \mathrm{~L}^{*} \mathrm{~atm} /\left(\mathrm{mol}^{*} \mathrm{~K}\right)=8.31 \mathrm{~J} /\left(\mathrm{mol}^{*} \mathrm{~K}\right)$
- density of fresh water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$

Possibly useful Moments of Inertia:

- Solid homogeneous sphere: $\mathrm{I}_{C M}=(2 / 5) \mathrm{MR}^{2}$
- Thin spherical shell: $\mathrm{I}_{C M}=(2 / 3) \mathrm{MR}^{2}$
- Thin uniform rod, axis perpendicular to length: $\mathrm{I}_{C M}=$ $(1 / 12) \mathrm{ML}^{2}$
- Solid homogeneous cylinder or disk, axis through center of mass and parallel to length: $\mathrm{I}_{C M}=(1 / 2) \mathrm{MR}^{2}$

Useful information for Geometry:

- Volume of a sphere: $\mathrm{V}=(4 / 3) \pi \mathrm{r}^{3}$
- Volume of a cylinder: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

CODE - AAGDDJ - PHY231C, Summer 2006 - PHY
231 C - Introductory Physics I - Virtual University
2
EXAM 3
Name:

Latent Heats and Phase Change Temperatures of some Materials (at atmospheric pressure)

	Melting		$\mathbf{B o i l i n g}$		
Material	$\mathbf{T}_{f}(\mathbf{K})$	$\mathbf{L}_{f}(\mathbf{J} / \mathbf{g})$	$\mathbf{T}_{v}(\mathbf{K})$	$\mathbf{L}_{v}(\mathbf{J} / \mathbf{g})$	
Alcohol	159	100	351	850	
Copper	1356	207	2868	4730	
Gold	1336	64.5	2933	1580	
Helium	-	-	4	21	
Hydrogen	14	58.0	20	455	
Lead	601	23.2	2017	858	
Mercury	234	11.4	630	296	
Nitrogen	63	26	77	200	
Oxygen	54	13.9	90	213	
Silver	1235	105	2323	2336	
Tungsten	3783	180	6170	4820	
Water	273	333	373	2263	

Specific Heats of some Materials (at room temperature and atmosperic pressure unless otherwise noted)

Material	$\mathbf{c}[\mathbf{J} / \mathbf{k g} \cdot \mathbf{C}]$	$\mathbf{c}[\mathrm{kcal} / \mathbf{k g} \cdot \mathbf{C}]$
Air $($ at $50 \cdot \mathrm{C})$	1050	0.25
Alcohol	2430	0.58
Aluminum	920	0.22
Copper	390	0.093
Glass	840	0.20
Granite	790	0.19
Ice $($ at $-10 \cdot \mathrm{C})$	2220	0.53
Iron, Steel	460	0.11
Lead	130	0.031
Mercury	140	0.033
Seawater	3900	0.93
Silver	240	0.056
Soil, Dirt	1000	0.24
Steam $(110 \cdot \mathrm{C})$	2010	0.48
Tungsten	135	0.032
Water	4186	1 exactly
Wood	1680	0.40

CODE - AAGDDJ - PHY231C, Summer 2006 - PHY
231 C - Introductory Physics I - Virtual University EXAM 3
Name:
$9 p t$ Identify the statements as being either True or False.
\triangleright Consider two planets orbiting a star. If one planet has eight times the period of another, it must also have four times the average orbital distance.

1. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright An object moving in a circle with constant speed has zero acceleration.

2. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

\triangleright If two planets have the same mass, but the second has twice the gravity, the second planet must also have half the radius.
3. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
$7 p t$ An object is thrown directly downward from the top of a very tall building. The speed of the object just as it is released is $27.3 \mathrm{~m} / \mathrm{s}$. After being thrown, the object falls freely due to gravity. Neglect air resistance and calculate the distance, in meters which the object covers between times t1 $=2.47 \mathrm{~s}$ and $\mathrm{t} 2=5.49 \mathrm{~s}$ after it is thrown.

$\mathbf{4 .} \mathbf{A} \bigcirc$	123	$\mathbf{B} \bigcirc$	139	$\mathbf{C} \bigcirc$	157	$\mathbf{D} \bigcirc$
$\mathbf{E} \bigcirc$	177					
200	$\mathbf{F} \bigcirc$	226	$\mathbf{G} \bigcirc$	256	$\mathbf{H} \bigcirc$	289

The bimetallic strip above is made of copper $(\alpha=12 \times$ $10^{-6}{ }^{\circ} \mathrm{C}^{-1}$) and iron ($\alpha=17 \times 10^{-6} \quad{ }^{\circ} \mathrm{C}^{-1}$).
When this strip is held down at the left end and heated, it will
\triangleright
5. $\mathbf{A} \bigcirc$ bend downward $\mathbf{B} \bigcirc$ bend upward $\mathbf{C} \bigcirc$ remain straight, while stretching its length

8 pt The height of the Eiffel tower is 321 m during the Summer when the temperature is $29.7^{\circ} \mathrm{C}$. What is the magnitude of the change in the height of the tower, when the temperature cools down to $-19.8{ }^{\circ} \mathrm{C}$ during the Winter? The coefficient of linear expansion of the tower's material is $1.10 \times 10^{-5} 1 / \mathrm{C}^{\circ}$. (in cm)

$$
\begin{array}{rlll}
\mathbf{6 . A} \bigcirc 1.75 \times 10^{1} & \mathbf{B} \bigcirc 2.32 \times 10^{1} & \mathbf{C} \bigcirc 3.09 \times 10^{1} \\
\mathbf{D} \bigcirc 4.11 \times 10^{1} & \mathbf{E} \bigcirc 5.47 \times 10^{1} & \mathbf{F} \bigcirc & 7.27 \times 10^{1} \\
\mathbf{G} \bigcirc 9.67 \times 10^{1} & \mathbf{H} \bigcirc 1.29 \times 10^{2} & &
\end{array}
$$

CODE - AAGDDJ - PHY231C, Summer 2006 - PHY

Name:

An incompressible fluid moves through the pipe shown above from RIGHT to LEFT. The pipe widens from a diameter of 3 cm at " B " to a diameter of 5 cm at "A". (Assume non-viscous laminar flow)
\triangleright The speed of the fluid at "A" is \qquad the speed of the fluid at "B".
7. $\mathbf{A} \bigcirc$ equal to $\mathbf{B} \bigcirc$ greater than
$\mathbf{C} \bigcirc$ less than

- The amount of fluid that passes "A" in one second is --------------------- the amount of fluid that passes " B " in one second.

8. $\mathbf{A} \bigcirc$ equal to $\mathbf{B} \bigcirc$ greater than $\mathbf{C} \bigcirc$ less than
\triangleright The pressure at " A " is \qquad the pressure at " B ".
9. $\mathbf{A} \bigcirc$ equal to $\mathbf{B} \bigcirc$ greater than $\mathbf{C} \bigcirc$ less than

A piece of moon rock reads 43.6 grams on a scale when in air, but 20.4 grams in a fluid having a specific gravity of 0.86 . What is the density of the moon rock in $\mathrm{kg} / \mathrm{m}^{3}$?

$$
\begin{array}{rlll}
\mathbf{1 0 . A} \bigcirc 4.24 \times 10^{2} & \mathbf{B} \bigcirc 5.30 \times 10^{2} & \mathbf{C} \bigcirc 6.62 \times 10^{2} \\
\mathbf{D} \bigcirc 8.27 \times 10^{2} & \mathbf{E} \bigcirc 1.03 \times 10^{3} & \mathbf{F} \bigcirc & 1.29 \times 10^{3} \\
\mathbf{G} \bigcirc 1.62 \times 10^{3} & \mathbf{H} \bigcirc 2.02 \times 10^{3} & &
\end{array}
$$

7 pt The pressure inside a gas bottle at $23.5^{\circ} \mathrm{C}$ is 3540 kPa . What will be the pressure inside the bottle, if 36.0 percent of the gas is released while the temperature drops to $8.8^{\circ} \mathrm{C}$?
(in kPa)
$\mathbf{1 1 . A \bigcirc 1 . 6 9 \times 1 0 ^ { 3 }}$
B〇 1.91×10^{3}
$\mathbf{C} 2.15 \times 10^{3}$
D 2.43×10^{3}
E $\bigcirc 2.75 \times 10^{3}$
$\mathbf{F} \bigcirc 3.11 \times 10^{3}$
G $\bigcirc 3.51 \times 10^{3}$
$\mathbf{H} \bigcirc 3.97 \times 10^{3}$

CODE - AAGDDJ - PHY231C, Summer 2006 - PHY
231 C - Introductory Physics I - Virtual University
EXAM 3
Name:

A hot $\left(800{ }^{\circ} \mathrm{K}\right)$ and a cold $\left(200^{\circ} \mathrm{K}\right)$ object are connected by two aluminum bars as shown.
\triangleright Considering the left configuration only, lowering the temperature of the $800^{\circ} \mathrm{K}$ block to $400^{\circ} \mathrm{K}$ will reduce the rate of heat transfer by a factor of
12. $\mathbf{A} \bigcirc$ one fourth $\mathbf{B} \bigcirc$ one half
$\mathbf{C} \bigcirc$ one third
\triangleright Compared to the configuration on the left, the rate of heat transferred in configuration shown the right is \qquad as high.
13. $\underset{\mathbf{C} \bigcirc \text { one fourth } \quad \mathbf{B} \bigcirc \text { one half }}{ }$
$\mathbf{C} \bigcirc$ one third
8 pt 0.16 kg of water at $85.0^{\circ} \mathrm{C}$ is poured into an insulated cup containing 0.206 kg of ice initally at 0°. Calculate the mass of liquid when the system reaches thermal equilibrium.
(in kg)

$$
\begin{array}{rlll}
\mathbf{1 4 .} \mathbf{A} \bigcirc 2.93 \times 10^{-1} & \mathbf{B} \bigcirc 3.31 \times 10^{-1} & \mathbf{C} \bigcirc 3.74 \times 10^{-1} \\
\mathbf{D} \bigcirc 4.23 \times 10^{-1} & \mathbf{E} \bigcirc 4.78 \times 10^{-1} & \mathbf{F} \bigcirc & 5.40 \times 10^{-1} \\
\mathbf{G} \bigcirc 6.10 \times 10^{-1} & \mathbf{H} \bigcirc 6.89 \times 10^{-1} & &
\end{array}
$$

$16 p t$ A figure skater is spinning with her arms and one leg extended as far as she can. She then pulls them in tight to her body. As her position contracts,
\triangleright her angular momentum
15. $\mathbf{A} \bigcirc$ decreases $\mathbf{B} \bigcirc$ increases
$\mathbf{C} \bigcirc$ remains the same
\triangleright her moment of inertia
16. $\mathbf{A} \bigcirc$ decreases $\mathbf{B} \bigcirc$ increases
$\mathbf{C} \bigcirc$ remains the same
\triangleright her rotational kinetic energy
17. $\mathbf{A} \bigcirc$ decreases $\mathbf{B} \bigcirc$ increases $\mathbf{C} \bigcirc$ remains the same
\triangleright her angular velocity
18. $\mathbf{A} \bigcirc$ decreases $\mathbf{B} \bigcirc$ increases $\mathbf{C} \bigcirc$ remains the same

CODE - AAGDDJ - PHY231C, Summer 2006 - PHY

Name:
$7 p t$ A uniform rod with length l and mass m is suspended by two thin strings as shown in the figure.

The rod is in horizontal position. Which of the equations represents the initial angular acceleration α of the rod when the string on the left is cut? (Hint: Use the parallel axis theorem.)

```
19. A}\bigcirc(3mg)/(2l
    B}\bigcirc(3ml)/(2g
    C\bigcirc(3l)/(2g)
    D\bigcirc(3g)/l
    E\bigcircl/(2g)
    F\bigcirc(3g)/(2l)
    G}\bigcircg/
    H\bigcirc(12l)/mg
```


A lamp hangs from end of a post whose weight is 318 N . If the tension in the wire is 720 N , what is the weight of the lamp? (in N)

$$
\begin{array}{rlllll}
\mathbf{2 0 . A} \bigcirc & 66 & \mathbf{B} \bigcirc & 82 & \mathbf{C} \bigcirc & 103 \\
\mathbf{L} \bigcirc & \mathbf{1} \bigcirc 9 \\
\mathbf{E} \bigcirc & 161 & \mathbf{F} \bigcirc & 201 & \mathbf{G} \bigcirc & 251 \\
\mathbf{H} \bigcirc & 314
\end{array}
$$

Printed from LON-CAPA@MSU
Licensed under GNU General Public License

