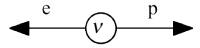
PHY492: Nuclear & Particle Physics

Lecture 10

Homework 3 Elementary Particle Physics

Alpha decay


4.1 Q values, T_{α} , T_{D}

Nuclei	A	Z	Mass (MeV)	BE(MeV)
α	4	2	3728.43	-28.30
²⁰⁴ Pb	204	82	190001.16	-1607.54
²⁰⁸ Po	208	84	193734.82	-1630.62
²³⁰ Th	230	90	214276.18	-1755.16
²²⁶ Ra	226	88	210543.00	-1731.63

$$Q = m_P - m_D - m_\alpha$$
, or $Q = BE_P - BE_D - BE_\alpha$, $T_\alpha = \frac{A - 4}{A}Q$, $T_D = \frac{4}{A}Q$
 $^{208}\text{Po} \rightarrow ^{204}\text{Pb} + \alpha$: $Q = 5.22 \text{ MeV}$, $T_D = 0.1 \text{ MeV}$, $T_\alpha = 5.12 \text{ MeV}$
 $^{230}\text{Th} \rightarrow ^{226}\text{Ra} + \alpha$: $Q = 4.77 \text{ MeV}$, $T_D = 0.08 \text{ MeV}$, $T_\alpha = 4.69 \text{ MeV}$

4.3 Neutron beta decay

configuration for

maximum electron energy

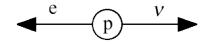
$$p_e = p_p$$
 momentum conservation

$$E_e^2 = (T_e + m_e)^2$$

$$p_e^2 = E_e^2 - m_e^2 = T_e^2 + 2m_e T_e$$

$$Q=T_e+T_p=T_e+\frac{p_e^2}{2m_p}=T_e+\frac{T_e^2+2m_eT_e}{2m_p} \quad \mbox{energy} \\ \mbox{conservation}$$

$$2m_p Q = 2(m_p + m_e)T_e + T_e^2$$


$$2m_pQ = \left[2(m_p + m_e) + T_e\right]T_e$$
; assume $T_e \ll m_p$

$$T_e \approx Q \frac{m_p}{m_p + m_e} \approx Q;$$

$$T_e \approx Q \frac{m_p}{m_p + m_e} \approx Q;$$
 $T_p \approx Q \frac{m_e}{m_p + m_e} \approx Q \frac{m_e}{m_p}$

max. electron energy max. proton energy

electron and neutrino energies ~ Q/2

$$\begin{split} p_e &= p_v \\ T_e + T_v &= Q = T_e + p_v c = T_e + p_e c; \quad p_e c = Q - T_e \\ p_e^2 c^2 &= Q^2 - 2QT_e + T_e^2 = E_e^2 - m_e^2 = \left(T_e + m_e\right)^2 - m_e^2 \\ T_e &= \frac{Q}{2} \frac{1}{\left(1 + m_e/Q\right)}; \quad T_v = Q \left[1 - \frac{1}{2\left(1 + m_e/Q\right)}\right] \end{split}$$

configuration for maximum neutrino energy

$$rac{p}{e}$$
 $rac{v}{r}$

$$T_p = \frac{Q}{2} \frac{1}{\left(1 + m_p/Q\right)}$$

$$T_p = \frac{Q}{2} \frac{1}{\left(1 + m_p/Q\right)} \qquad T_v = Q \left(1 - \frac{1}{2\left(1 + m_p/Q\right)}\right) \approx Q$$

maximum neutrino energy

4.5 Lepton number conservation

- +1 for neutrinos and negative charged leptons
- -1 for antineutrinos and positive charged leptons and

(a)
$$\mu^- \rightarrow e^- + \nu_\mu + \overline{\nu}_e$$

(b)
$$\tau^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\tau}$$

(c)
$$e^{-} + {}^{A}X^{Z} \rightarrow {}^{A}Y^{Z-1} + \nu_{e}$$

(d)
$$V_{\mu} + n \rightarrow \mu^{-} + p$$

(e)
$${}^{A}X^{Z} \rightarrow {}^{A}Y^{Z-1} + e^{+} + \nu_{e}$$

(f)
$$\overline{V}_e + p \rightarrow e^+ + n$$

4.7 Beta decay and S.E.M.F.

$$M(A,Z)c^{2} = \alpha A - \beta Z + \gamma Z^{2} \pm a_{5}A^{-\frac{3}{4}}$$

$$\frac{dM}{dZ}c^{2} = -\beta + 2\gamma Z = 0$$

$$Z = \frac{\beta}{2\gamma} \approx \frac{4a_{4}}{2(4a_{4} + a_{3}A^{-\frac{1}{3}})}$$

$$= \frac{1}{\left(2 + \frac{a_{3}}{2a_{4}}A^{-\frac{1}{3}}\right)} = \frac{1}{\left[2 + \left(1.5 \times 10^{-2}\right)A^{-\frac{1}{3}}\right]}$$

Shell Model would favor Z=126, N=184,
$$A=Z+N=310$$

Very close to the $Z^2/A=51$ (>47) susceptible to fission

 $\alpha = m_{n}c^{2} - a_{1} + a_{2}A^{-\frac{1}{3}} + a_{4}$

 $\beta = 4a_4 + (m_n - m_p)c^2 \approx 4a_4$

5.1 Neutron energy loss in scattering (see Problem 2.9)

$$E_1 = \left(\frac{A-1}{A+1}\right)^2 E_0$$

 $E_1 = \left(\frac{A-1}{A+1}\right)^2 E_0$ energy of neutron after one backscatter off A.

$$E_1 = \left(\frac{A-1}{A+1}\right)^2 E_0 = 0; \quad A = 1 \quad \text{one backscatter off 1H.}$$

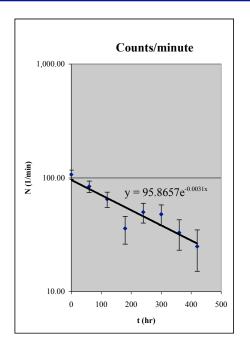
$$E_{1} = \left(\frac{A-1}{A+1}\right)^{2} E_{0} = \left(\frac{26}{28}\right)^{2} E_{0} = 0.86 E_{0} \quad \text{one backscatter off } ^{27}\text{Al}.$$

5.3 Radioactive decay rate

$$R(t) = A \exp[t / \tau];$$

$$A = 96 / \min$$

$$1/\tau = .0031 \text{ min}^{-1}$$
 $\tau = 322 \text{ min}$


5.5 Proton decay, 103 metric tons of H2O

$$N - N_0 = N_0 \left(1 - e^{-t/\tau} \right) \approx \frac{N_0}{\tau} t$$

$$\frac{N_0}{\tau}$$
 is the rate per year, $N = \frac{N_0}{\tau}t$ $\tau = 10^{33}$ yrs

$$m_0 = 10^9 \text{ gm}, N_0 = \left(\frac{2}{18}\right) 10^9 \left(6 \times 10^{23}\right) = 6.7 \times 10^{31}$$

$$R_0 = \frac{N_0}{\tau} = \frac{6.7 \times 10^{31}}{10^{33} \text{ yr}} = 6.7 \times 10^{-2} \text{ yr}^{-1}; \quad N = (6.7 \times 10^{-2} \text{ yr}^{-1})(50 \text{ yr}) = 3.3$$

5.7 Power Plant: 500MW, 235U, 5% efficiency

$$500\text{MW} = 5 \times 10^8 \text{ J/s} / 1.6 \times 10^{-13} \text{ J/MeV} = 3.0 \times 10^{21} \text{ MeV/s}$$

 $Q / \text{nucleus} \approx 200 \text{ MeV/nucleus} \text{ (see D\&F calculation 5.2)}$

$$R_{nuclei} = (3 \times 10^{21} \text{ MeV/s}) / (200 \text{ MeV/nucleus}) = 1.5 \times 10^{19} \text{ nuclei/s}$$

$$R_{mass} = \frac{(235 \text{ gm/mole})(1.5 \times 10^{19} \text{ nuclei/s})}{6.02 \times 10^{23} \text{ nuclei/mole}} = 6.0 \times 10^{-3} \text{ gm/s}$$

$$= (6.0 \times 10^{-3} \text{ gm/s})(86400 \text{ s/day}) = 520 \text{ gm/day}$$

but, only 5% conversion of heat to electricity

$$R_{elec} = \frac{520 \text{ gm/day}}{.05} = 10,000 \text{ gm/day} = 10 \text{ kg/day}$$

Exam 1, Wednesday

Don't forget Martinus Veltman's book, chapters 1-4 Das & Ferbel, chapters 1-5, homework 1,2,3 Bromberg, lectures 1-10,

Elementary particle physics

- Old question: what are the "fundamental" constituents of matter?
 - Matter is constructed from the (elementary) elements of the periodic table
 - · Atoms; H, He, ..., C, ..., O, ... U, ...
 - Molecules: H₂0, CO₂, O₂, ...
 - Atoms have internal structure
 - Atomic nucleus: positive charge, mass ~ A x 931.5 MeV/c²
 - Atomic electrons: negative charge, small mass 0.51 MeV/c²
 - Nuclei have internal structure
 - Protons, charge +1e, mass, ~ 938.3MeV/c²
 - Neutrons, charge 0, mass ~ 939.6MeV/c²
 - Minus | binding energy |
 - Nucleons and other "hadrons" have internal structure
 - Three charge +2/3e quarks, masses ~ 50 , 1500, 175,000 MeV/c²
 - Three charge -1/3e quarks, masses ~ 5, 500, 5100 MeV/c²
- Does this sequence of ever finer elemental structure continue forever?
 - Do quarks have substructure, and higher energies needed to see it?
 - Or develop a new paradigm

New paradigm of elementary particle physics

- The "Standard Model" of elementary particle physics
 - Quarks and leptons are unique disturbances in the "fabric" of spacetime. The number of disturbance types is limited.
 - Quarks and leptons obtain their unique masses through interactions of the disturbance with a hypothetical "Higgs" field.
 - Gauge particles (photon, gluon, and weak bosons) mediate interactions between the quarks and leptons
- · What the standard model does not predict
 - Where does gravity fit into the picture
 - Origin of the particle antiparticle asymmetry in the universe
 - Mixing of mass and flavor states for quarks and leptons
 - The relationship between quarks and leptons
 - The nature of "dark matter" and "dark energy"
 - Surprises of unknown origin

Interactions

- Interactions (forces) occur between (act on) "charges"
 - Strong (color charge, QCD)
 - quarks carry color charge, $(Q_c = r, g, b)$
 - Electromagnetic (electric charge)
 - quarks (Q_e =-1/3, +2/3)
 - charged leptons ($Q_e = -1$)
 - Weak (weak charge)
 - quark flavors: up, charm, top $(Q_w = +1/2)$ down, strange, bottom $(Q_w = -1/2)$
 - leptons: neutrinos v_e , v_μ , v_τ ($Q_w = +1/2$) charged e^- , μ^- , τ^- ($Q_w = -1/2$)
 - Quantities conserved by the interactions
 - Electric Charge, Baryon (3 quarks) number, Lepton number,
 - Quark flavor (Can be violated by Weak Interactions)
 - Isospin (Conserved only by Strong Interactions)

Leptonic (point-like) particles of the Standard Model

- Lepton "flavors" (spin = 1/2)
 - Electric charge Q = -e
 - e^- , electron, mass = 0.511 MeV/c²
 - μ^- , muon, mass = 105 MeV/c²
 - τ^{-} , tau, mass = 1.77 GeV/c²
 - Electric charge Q = 0 (left-handed)
 - Flavor states (same as the charged leptons)
 - v_e , electron neutrino
 - v_{μ} , muon neutrino
 - v_{τ} , tau neutrino
 - Mass states: v_1 , v_2 , v_3 (m < 1 eV/c²)
- Anti-leptons
 - charged: $e^+,~\mu^+,~\tau^+$ neutral: $\overline{v}_e,~\overline{v}_\mu,~\overline{v}_\tau$

Hadronic (point-like) particles of the Standard Model

- Quark "flavors" (spin = 1/2)
 - - u, up, mass ~ 3 MeV/c²
 - c, charm, mass ~ 1.2 GeV /c²
 - t, top, mass ~ 175 GeV /c²
 - Electric charge Q = +2/3e Electric charge Q = -1/3e
 - d, down, mass ~ 7 MeV/c²
 - s, strange, mass ~ 120 MeV/c²
 - b, bottom, mass ~ 4.2 GeV/c²
- Anti-quark "flavors" (spin = 1/2)

- Q = -2/3e:
$$\overline{u}$$
, \overline{c} , \overline{t} Q = -2/3e: \overline{d} , \overline{s} , \overline{b}

Q = -2/3e:
$$\overline{d}$$
, \overline{s} , \overline{b}

- Hadrons (colorless quark combinations)
 - Baryons: three quarks, one of each color (Q = -1 to +2e, spin = 1/2, 3/2)
 - light: proton (uud), neutron (udd), Δ^{++} (uuu), ...
 - strange, charm, bottom: $\Xi_c(csd)$, $\Lambda_b(bdu)$, ... no top baryons
 - Mesons: quark & antiquark pair (color/anti-color, colorless, spin = 0, 1)
 - light: $\pi^+(ud)$, $K^-(s\overline{u})$, ...
 - strange, charm, bottom: $D^+(cd)$, $B^0(bd)$, ..., no top mesons

Hadron masses and binding energy

• ³He Nucleus (ppn)

- proton, mass = 938.27 MeV/c^2
- neutron mass = 939.57 MeV/c²

$$(2m_p + m_n)c^2 = 2816.11 \text{ MeV}$$

 $(m_{^{3}\text{He}})c^2 = 2808.39 \text{ MeV}$
 $BE = (m_{^{3}\text{He}} - 2m_p - m_n)c^2 = -7.72 \text{ MeV}$

BE is negative. Energy is radiated to form the nucleus. i.e., energy is needed to break it up

Proton (uud)

- u, up, mass ~ 3 MeV/ c^2
- d, down, mass ~ 7 MeV/c²

$$(2m_u + m_d)c^2 \approx 13 \text{ MeV}$$

$$m_p c^2 = 938.27 \text{ MeV}$$

$$BE = (m_p - 2m_u - m_d)c^2 = +925 \text{ MeV}$$

BE is POSITIVE? Is this "binding"? Proton should blow apart!

Quantum Chromo-Dynamics (QCD) resolves the paradox

QCD allows quarks to remain low mass (asymptotic freedom) when inside a hadron. However, the color force increases the quark mass greatly ($m_{quark} \gg m_{hadron}$) if separated >1 fm from others. Quarks confined within hadrons, there are NO free quarks.

Baryon quantum number

Baryon number (B)

B = +1 for three quarks (qqq) in a color singlet (r,g,b)

B = -1 for three anti-quarks $(\bar{q} \bar{q} \bar{q})$ in a color singlet $(\bar{r}, \bar{g}, \bar{b})$

B = 0 for meson (q, \overline{q}) color singlet states

Note: some recent evidence for $(qqqq\bar{q})$ baryon states

Baryon number conservation

- Experiment finds B conserved in all interactions
- Baryon number violation required to generate matter asymmetry
- Unseen transformation lepton <--> quark violates B conservation
- Proton decay violates B but may conserve B L (e.g., $p \rightarrow e^+ \pi^0$)

Examples

Decay:
$$p \not\prec \pi^+ \pi^0$$
 $B = +1 \not\prec B = 0$

Collision:
$$pp \rightarrow ppp\overline{p}$$
 $B = +2 \rightarrow B = +3 - 1 = +2$