PHY492: Nuclear & Particle Physics

Lecture 16

CP Violation

Weak Boson

K⁰ & K⁰ mixing

- Parity violation in K⁺ decay
 - 2 pions, P = +
 - -3 pions, P = -
 - T.D. Lee, C.N. Yang (1956)
- Prediction for K⁰ decays
 - M. Gell-Mann & A. Pais (1955)
 - Two decay constants
 - CP eigenstates are the key
 - Weak Interaction (2nd order) can cause particle ---> antiparticle for neutral particles
 - K^0 is not an eigenstate of C or P.
 - linear combinations are eigenstates of CP

$$K^{+} \rightarrow \pi^{+}\pi^{0} \text{ or } \pi^{+}\pi^{+}\pi^{-}$$

 $(\tau = 1.2 \times 10^{-8} \text{ s})$

$$(\tau^+, \, \theta^+ \, \text{puzzle})$$

$$K^{0} \to \pi^{+}\pi^{-}$$
 $(\tau = 0.9 \times 10^{-10} \text{s})$ fast $K^{0} \to \pi^{+}\pi^{-}\pi^{0}$ $(\tau = 0.5 \times 10^{-7} \text{s})$ slow

$$\mathbf{K}^{0} \left\{ \begin{array}{c|c} \mathbf{d} & \mathbf{u} & \mathbf{s} \\ \hline & \mathbf{\tilde{s}} & W^{+} & \mathbf{\tilde{d}} \end{array} \right\} \overline{\mathbf{K}^{0}}$$

$$\left| \mathbf{K}_{1} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| \mathbf{K}^{0} \right\rangle - \left| \mathbf{\overline{K}}^{0} \right\rangle \right) \qquad CP \left| \mathbf{K}_{1} \right\rangle = + \left| \mathbf{K}_{1} \right\rangle$$

$$\left| \mathbf{K}_{2} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| \mathbf{K}^{0} \right\rangle + \left| \mathbf{\bar{K}}^{0} \right\rangle \right) \qquad CP \left| \mathbf{K}_{2} \right\rangle = -\left| \mathbf{K}_{2} \right\rangle$$

K⁰ & K⁰ oscillations

Neutral K decays

$$-\pi^{+}\pi^{-}$$
, P = +1, C = +1, CP = +1

$$\pi^{+}\pi^{-}\pi^{0}$$
 , P = -1, C = +1, CP = -1

$$|K_1\rangle = \frac{1}{\sqrt{2}} (|K^0\rangle - |\overline{K}^0\rangle)$$
 fast decay

$$\pi^+\pi^-\pi^0$$
, $P = -1$, $C = +1$, $CP = -1$ $\left|K_2\right\rangle = \frac{1}{\sqrt{2}} \left(\left|K^0\right\rangle + \left|\overline{K}^0\right\rangle\right)$ slow decay

- $K^0 \& \overline{K}^0$ created by strong interactions.
 - weak interactions select K_1 & K_2 and have slightly different masses ($\Delta m = m_2 - m_1$)
 - Mix of K₁ and K₂ will change as particle propagates
 - QM text book.

$$\left| \mathbf{K}^{0} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| \mathbf{K}_{1} \right\rangle + \left| \mathbf{K}_{2} \right\rangle \right)$$

$$\left| \overline{K}^{0} \right\rangle = -\frac{1}{\sqrt{2}} \left(\left| K_{1} \right\rangle - \left| K_{2} \right\rangle \right)$$

propagates time dependence almost straight from
$$|K_1(t)\rangle = K_1(0) \Big[e^{im_1c^2t/\hbar} e^{-\Gamma_1t/2\hbar} \Big]$$
 QM text book.
$$|K_2(t)\rangle = K_2(0) \Big[e^{im_2c^2t/\hbar} e^{-\Gamma_2t/2\hbar} \Big]$$

Starting with pure K^0 , the \overline{K}^0 intensity grows then oscillates

$$I(\bar{K}^{0}) = \frac{1}{4} \left[e^{-\Gamma_{1}t} + e^{-\Gamma_{2}t} - 2e^{-\left[(\Gamma_{1} + \Gamma_{2})/2\right]t} \cos\left(\Delta mc^{2}t / \hbar\right) \right] \frac{\tau = 2\pi\hbar/\Delta mc^{2} = 1.2 \times 10^{-9} \text{s}}{\Delta mc^{2} = 3.52 \times 10^{-6} \text{ eV}}$$

$$\tau = 2\pi\hbar/\Delta mc^2 = 1.2 \times 10^{-9} \text{ s}$$

 $\Delta mc^2 = 3.52 \times 10^{-6} \text{ eV}$

CP violation in K decays

• 1964 Christenson, Cronin, Fitch, & Turlay discover $\sim 3 \times 10^{-3}$ of K₂ beam decays to $\pi^+ + \pi^-$ or $\pi^0 + \pi^0$

 K^{0} and K^{0} -bar are not pure mixtures of CP eigenstates, K_{1} & K_{2}

- Short lived version is called $\,K_S^0\,$ and long lived called $\,K_L^0\,$

$$K_L^0$$
 = mostly K_2 with a little K_1 , so causes "indirect" CP violation

$$\left| K_{L}^{0} \right\rangle = \frac{1}{\sqrt{1 + \left| \varepsilon \right|^{2}}} \left(\left| K_{2} \right\rangle + \varepsilon \left| K_{1} \right\rangle \right)$$

- Also H_{weak} has a very small direct CP violating term
 - Parity violation in weak interactions is maximal.
 No right handed neutrinos have ever been found.
 Relativistic quantum mechanics can handle this well.
 - CP violation is a whole other story, that continues to dominate about 1/2 of all HEP to this day.

What's all the fuss about CP violation?

• Semi-leptonic decays of K_L^0 :

$$\left| K_{L} \right\rangle \rightarrow \pi^{+} + e^{-} + \overline{V}_{e}$$
$$\left| K_{L} \right\rangle \rightarrow \pi^{-} + e^{+} + V_{e}$$

- If CP were a good symmetry decays should be identical (decay fraction, etc.)
- Experiments show the e⁺ decay greater than e⁻ decay by 3.3 parts in 1000, -> CP violation.

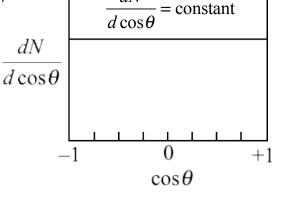
Consequences of CP violation

- 1. Makes absolute distinction of matter (e⁻) from anti-matter (e⁺).
- 2. Provides unambiguous definition of "positive" charge.
- 3. Since CPT is good symmetry, CP violation implies Time reversal symmetry (T) is also broken though never seen.
- 4. May be responsible for matter-antimatter asymmetry in nature.

How to present angular data

- Differential solid angle: $d\Omega = \sin\theta d\theta d\phi = d(\cos\theta)d\phi$
- Isotropic distribution yields equal intensity in each solid angle element.

• Plotting a isotropic distribution vs θ does not yield a constant: $|\sin \theta|$



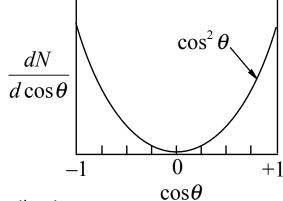
Rho meson decay to 2 pions

$$\rho^{0}(J=1, J_{z}=0) \to \pi^{+}\pi^{-} \text{ (both } J=0)$$

Angular distribution:

$$\frac{d\sigma}{d\cos\theta} \sim \left| Y_{10} \right|^2 \sim \cos^2\theta$$

 $\frac{dN}{d\theta}$



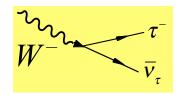
Actual data has some contributions from L=0,2 distorting the distribution

 $\pi/2$

Weak interactions and W boson

- Leptonic weak decays
 - quark color unchanged, W colorless
 - quark flavor change: e.g., d --> u
 - W⁺ & W⁻ mediate flavor change
 - electron and antineutrino originate in W boson "decay"
- · Given enough energy W can "decay" to
 - leptons heavier than an electron

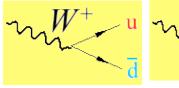




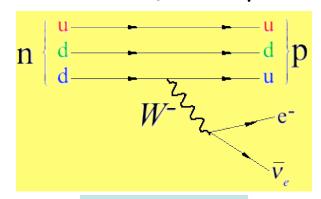
- Hadrons, via colorless q q-bar pairs

 Σ (quark charges)

= W charge

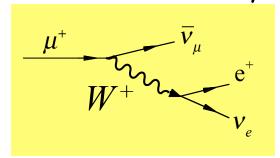


• Neutron β decay



$$n \rightarrow p + e^- + \overline{v}_e$$

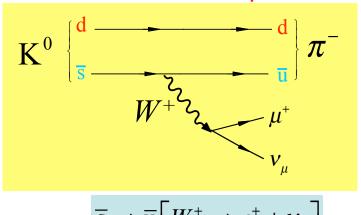
Positive muon decay



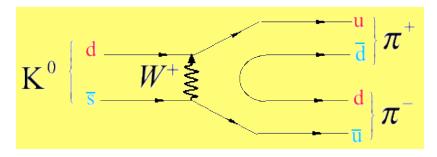
$$\mu^+ \rightarrow \overline{\nu}_{\mu} + e^+ + \nu_e$$

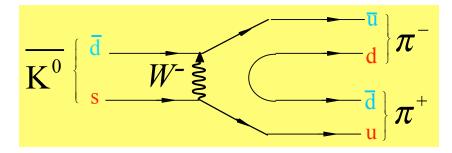
K⁰ decays and the W boson

- π^+ meson leptonic decay
 - $\pi^{+} \left\{ \begin{array}{c} \overline{\mathbf{d}} & W^{+} & \mu^{+} \\ \mathbf{u} & & v_{\mu} \end{array} \right.$ $\mathbf{u} \to d \left[W^{+} \to \mu^{+} + v_{\mu} \right]$
- K⁰ meson semi-leptonic decay



 $K^0\&\ K^0$ have hadronic decays to the same state $\pi^+\!\!+\!\pi^-$



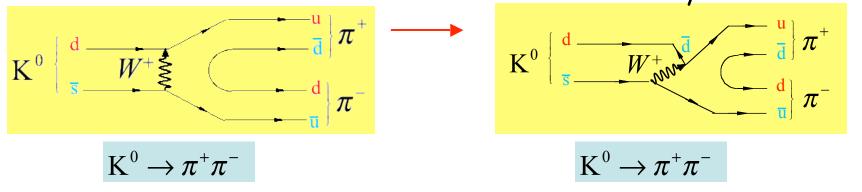


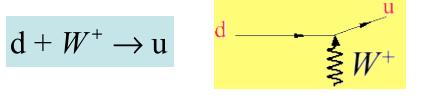
Why don't these diagrams look like the leptonic decay of W?

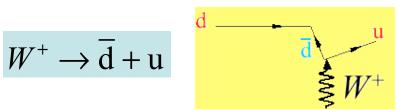
Feynman diagram wizardry

W changes both quark flavors

One quark flavor change + W "decay"





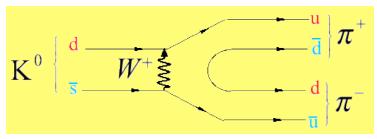


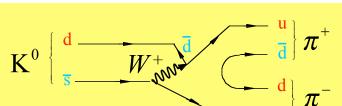
Quark "absorbs" a W and changes flavor

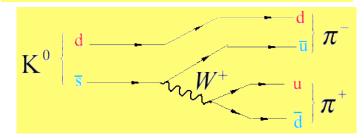
W "decay" with
quark + anti-quark annihilation

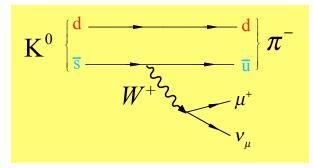
· Changing direction of a quark line turns it into an anti-quark line

Weak interaction Feynman diagrams









W changes both quark flavors?

- One quark flavor change+ W "decay"
- One quark flavor change
 + W "decay"
- One quark flavor change
 + W leptonic decay

K⁰ & K⁰ mixing (review)

- Parity violation in K⁺ decay
 - 2 pions, P = +
 - -3 pions, P = -
 - T.D. Lee, C.N. Yang (1956)
- Prediction for K⁰ decays
 - M. Gell-Mann & A. Pais (1955)
 - Two decay constants
 - CP eigenstates are the key
 - Weak Interaction (2nd order) can cause particle ---> antiparticle for neutral particles
- K^0 is not an eigenstate of C or P.
- linear combinations of K⁰/K⁰-bar are eigenstates of CP

$$K^+ \to \pi^+ \pi^0 \text{ or } \pi^+ \pi^+ \pi^-$$

 $(\tau = 1.2 \times 10^{-8} \text{ s})$

$$(\tau^+, \theta^+ \text{ puzzle})$$

$$K^{0} \to \pi^{+}\pi^{-}$$
 $(\tau = 0.9 \times 10^{-10} \text{s})$ fast $K^{0} \to \pi^{+}\pi^{-}\pi^{0}$ $(\tau = 0.5 \times 10^{-7} \text{s})$ slow

$$\mathbf{K}^{0} \left\{ \begin{array}{c|c} \mathbf{d} & \mathbf{u} & \mathbf{s} \\ \hline \mathbf{g} & W^{+} & \mathbf{g} \\ \hline \mathbf{u} & \mathbf{d} \end{array} \right\} \overline{\mathbf{K}^{0}}$$

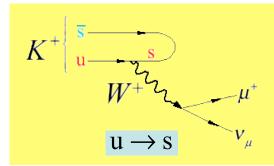
$$\left| \mathbf{K}_{1} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| \mathbf{K}^{0} \right\rangle - \left| \mathbf{\overline{K}}^{0} \right\rangle \right) \qquad CP \left| \mathbf{K}_{1} \right\rangle = + \left| \mathbf{K}_{1} \right\rangle$$

$$\left| \mathbf{K}_{2} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| \mathbf{K}^{0} \right\rangle + \left| \mathbf{\overline{K}}^{0} \right\rangle \right) \qquad CP \left| \mathbf{K}_{2} \right\rangle = -\left| \mathbf{K}_{2} \right\rangle$$

Mixing of quark generations

- Leptons don't cross generations (e, μ , τ)
- Cabibbo realizes an angle describes quark decays across generations
 - Cabibbo angle θ_c ~13 $^\circ$ gives relative probability of u <--> d and u <--> s decays
 - Many decay rates explained by this angle. Example: meson leptonic decay.

π^+	$\begin{bmatrix} \overline{\mathbf{d}} \\ \mathbf{u} & \mathbf{d} \\ W^{+} & \mu^{+} \end{bmatrix}$
	$u \rightarrow d$



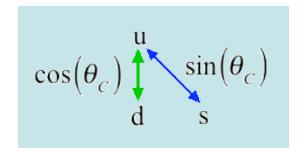
- π decay rate is proportional to $\cos^2(\theta_c)$
- K decay rate is proportional to $\sin^2(\theta_c)$

Ratio of the rates:
$$\frac{\Gamma(K \to \mu \nu)}{\Gamma(\pi \to \mu \nu)} \sim \tan^2(\theta_c)$$

with mass effect corrections, agreement is excellent

	Generation		
Charge	1	2	3
+2/3	u	c	t
-1/3	d	S	b

Decays within a generation are favored over across generations



s/d quark mixing

$$\begin{pmatrix} \mathbf{u} \\ \mathbf{d} \end{pmatrix}, \begin{pmatrix} \mathbf{u} \\ \mathbf{s} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{u} \\ \mathbf{d} \cdot \cos \theta_C + \mathbf{s} \cdot \sin \theta_C \end{pmatrix}$$

strong interaction

weak interaction