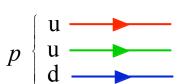
PHY492: Nuclear & Particle Physics Part II

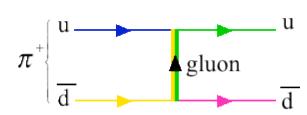
Lecture 19

QCD
Deep inelastic lepton scattering
Time evolution of Neutrino species

QCD basics

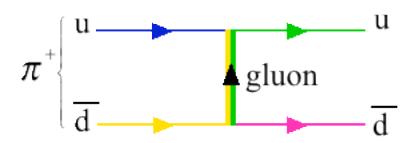

- Quarks in three colors
 - red ____
 - green —
 - blue -

- Antiquarks in three anticolors
 - anti-red
 - anti-green
 - anti-blue -

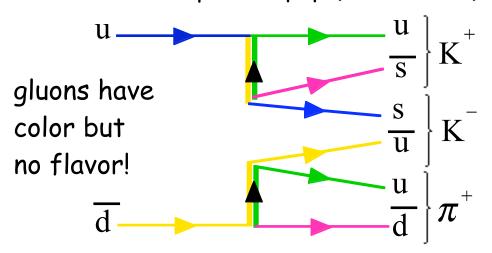

- Mesons
 - quark-antiquark pair
 - color-anticolor

 π^+ $\left\{\begin{array}{c} u \\ \overline{d} \end{array}\right.$

- · Baryons
 - 3 quarks
 - 3 different colors



- · Strong (color) force between quarks is due to gluon exchange
 - gluon has no electric charge or flavor
 - gluon carries a color-anticolor pair
 - exchange changes only quark colors
 - in mesons gluon changes both colors


QCD force

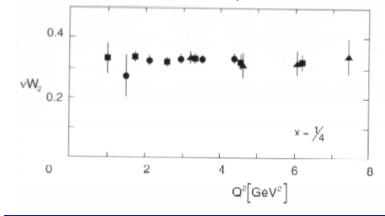
Pi meson

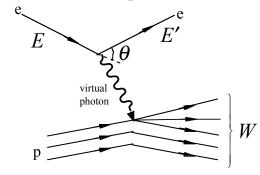
- Attempt to free the quarks
 - force grows with separation INSTEAD
 - huge field energy density
 - huge energy density \overline{d}

- Gluon -> quark-antiquark pair
 - tail end splits to a s s
 - head end to u ū
 - gluons conserve flavor
 - must split to $q \overline{q}$ (same flavor)

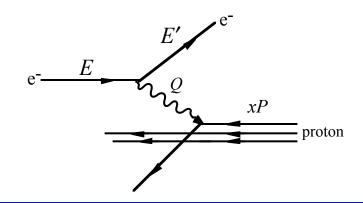
Quarks and gluons point-like within hadrons

- Parton (Feynman's term) model of hadrons remains with us, replacing partons with quarks and gluons.
- Electron scattering on hydrogen and deuterium targets.

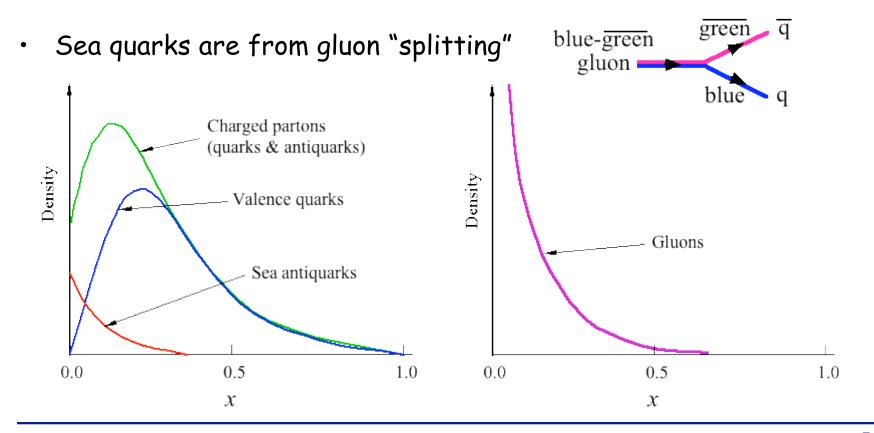

$$v = E - E'$$


$$Q^2 = 4EE' \sin^2(\theta/2)$$

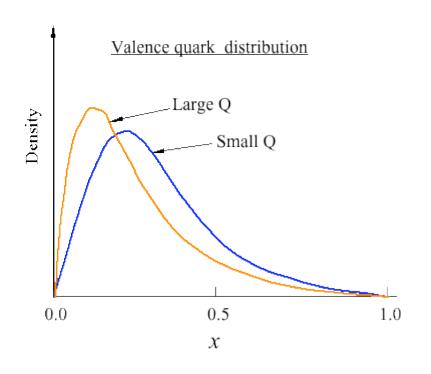
Bjorken scaling variable:
 0 < x < 1

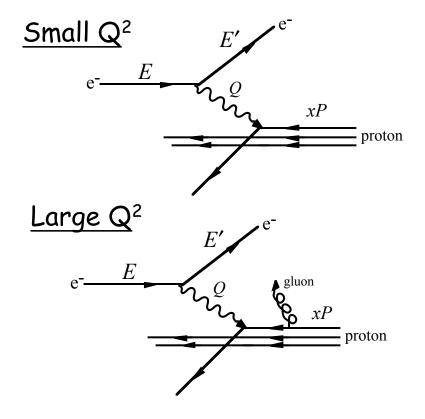

$$x = \frac{Q^2}{2m_p v}$$

• If there are partons, cross sections at fixed x independent of \mathbb{Q}^2

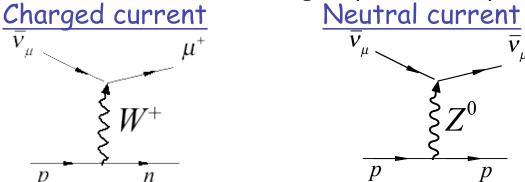

Viewed from infinite momentum frame

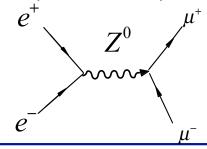
Parton distribution functions in the proton


"Valence" "Sea"


- Proton "parton" content is $uud + (q \overline{q} pairs) + gluons$
- At Q ~5 GeV/c, proton is 50% quarks and 50% gluons

Scaling violations


- Full QCD calculations predict deviations from scaling at large Q²
 - Large Q2 means a "hard virtual photon"
 - Large Q² kicks quark out before it can "catch" radiated gluons.
 - Observed gluon fraction increases for large Q^2 .



Weak neutral currents

- In addition to W^+,W^- bosons, there is a neutral version, Z boson.
- As seen earlier, there is a cancellation of weak neutral currents in weak decays due to the symmetry of the CKM matrix
- The absence of weak neutral currents lead some to believe they were absent. Neutrino scattering experiments proved them wrong.

• CERN spps collider finished it off by producing them in hadronic collisions. However, the prettiest production is in e+e- collisions.

Neutrino mass

- Many attempts to see if neutrinos have mass
 - Tritium beta decay end-point
 - electron neutrino mass < 3 eV/c²
 - Meson decays
 - muon neutrino mass < 200 keV/c²
 - tau neutrino mass < 18 MeV/c²
 - Cosmological limits
 - lots of assumptions about big bang
 - nuclear-synthesis, more assumptions
 - (number density)x(mass) in universe constraint
 - neutrino masses < 1 eV
- Theoretical bias for non-zero neutrino mass
 - Why are all neutrinos left-handed?
 - What happened to all the right hand neutrinos?
 - "See-Saw" mechanism
 - right hand neutrinos forced to be VERY MASSIVE
 - · and left hand neutrinos to be very light (but not zero).

Propagation of neutrino mass states

- Remember, Schrodinger wave equation solutions?
- Remember, time dependent Schrodinger wave equation solutions?

$$e^{-i(\omega t - kx)}; \quad \omega = \frac{E}{\hbar}; \quad k = \frac{p}{\hbar}$$

$$\psi(x,t) = \psi(x,0)e^{-\frac{i}{\hbar}(Et - px)}; \quad \text{let } x = L, \ t = L/c$$

$$\psi(L) = \psi(0)e^{-\frac{i}{\hbar c}(E - pc)L}$$

$$\psi(L) = \psi(0)e^{-\frac{i}{\hbar c}\frac{m^2c^4}{2E}L}$$

$$\psi(L) = \psi(0)e^{-\frac{i}{\hbar c}\frac{m^2c^4}{2E}L}$$

$$pc = E\sqrt{1-\frac{m^2c^4}{E^2}} \approx E-\frac{m^2c^4}{2E}, \quad E>> mc^2$$

$$E-pc \approx \frac{m^2c^4}{2E}$$
 Phase factor
$$e^{-\frac{i}{\hbar c}\frac{m^2c^4}{2E}L}$$
 depends on distance L from production,

particle energy, and mass squared !!