PHY492: Nuclear & Particle Physics

Lecture 21

Neutrinos and neutrino oscillations HW hints Beyond the Standard Model

Tier II Assignments in E-mail this afternoon

Propagation of neutrino mass states

- Remember, Schrodinger wave equation solutions?
- Remember, time dependent Schrodinger wave equation solutions?

$$e^{-i(\omega t - kx)}; \quad \omega = \frac{E}{\hbar}; \quad k = \frac{p}{\hbar}$$

$$\psi(x,t) = \psi(x,0)e^{-\frac{i}{\hbar}(Et - px)}; \quad \text{let } x = L, \ t = L/c$$

$$\psi(L) = \psi(0)e^{-\frac{i}{\hbar c}(E - pc)L}$$

$$\psi(L) = \psi(0)e^{-\frac{i}{\hbar c}\frac{m^2c^4}{2E}L}$$

$$\psi(L) = \psi(0)e^{-\frac{i}{\hbar c}\frac{m^2c^4}{2E}L}$$

$$pc = E\sqrt{1-\frac{m^2c^4}{E^2}} \approx E-\frac{m^2c^4}{2E}, \quad E>> mc^2$$

$$E-pc \approx \frac{m^2c^4}{2E}$$
 Phase factor
$$e^{-\frac{i}{\hbar c}\frac{m^2c^4}{2E}L}$$
 depends on distance L from production,

particle energy, and mass squared !!

Three v flavors and three v masses

- As is the case for quarks, the mixing matrix is 3x3
- Very different from quarks, off-diagonal mixing angles are LARGE.

Missing one crucial angle, $\sin \theta_{13}$, and a CP violating phase δ

Result for muon neutrinos oscillating to electron neutrinos is the same as in the two neutrino case.

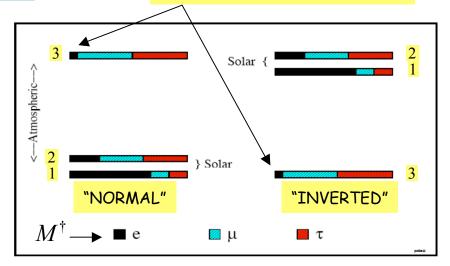
appearing

appearing electron neutrinos
$$\left| \left\langle v_e \middle| v(L) \right\rangle \right|^2 = \sin^2 2\theta_{13} \sin^2 \left(1.27 \Delta m_{23}^2 L \middle/ E \right)$$

$$\Delta m_{23}^2 \sim 3 \times 10^{-3} \text{ eV}^2$$
; pick $E \sim 2 \text{ GeV}$
 $\lambda = \frac{2\pi E}{1.27 \Delta m_{23}^2} = \frac{4\pi}{4 \times 10^{-3}} \text{km} \approx 3000 \text{ km}$
First maximum at $\lambda / 4 \approx 750 \text{ km}$

Fermilab neutrino beam points to Sudan MN which is 750 km away

Mass hierarchy of three mass states


• Mass splitting $\Delta m_{ij}^2 = \left| m_j^2 - m_i^2 \right|$

Solar:
$$\Delta m_{12}^2 \sim 5 \times 10^{-5} \text{ eV}^2$$
 Small

Atmospheric: $\Delta m_{23}^2 \sim 2.5 \times 10^{-3} \text{ eV}^2$

e component not to scale

- Mass hierarchy unknown
 - "NORMAL" as in quark masses
 - "INVERTED" as in P-states?
 - Can't do CP violation on earth without hierarchy resolution

- MSW effect
 - In a long baseline experiment v_e and \overline{v}_e passing through the earth have oscillation probability affected with opposite signs.
 - Good for determination of mass hierarchy, but complicates CP violation analysis. Unavoidable, even in Japan.

HW hints

$$\delta E \delta t \sim \hbar; \quad \tau \sim \frac{\hbar}{\Gamma}$$

Top quark decay

$$t \to W + b$$

Top produced ~ at rest

Total energy is top mass

W momentum = b-quark momentum

Parton-parton collision

$$p_{a} = x_{a} \frac{\sqrt{s}}{2c} \qquad p_{b} = -x_{b} \frac{\sqrt{s}}{2c}$$

s = center of mass energy squared of pp collision

 \hat{s} = center of mass energy of parton(a) parton(b) collision

$$= x_a x_b s$$

$$\Lambda = (uds); \quad \Sigma^+ = (uus)$$

$$K^0 = (\overline{s}d); \quad K^+ = (\overline{s}u)$$

$$\pi^+ = (u\overline{d}); \quad \pi^+ = \frac{1}{\sqrt{2}}(u\overline{u} + d\overline{d})$$

HW hints

14.5 Q=-1/3 Quark mixing matrix

Strong Interaction state

$$K^0 = (d, \overline{s})$$

$$\begin{pmatrix} d \\ s \end{pmatrix} = \begin{pmatrix} \cos \theta_C & -\sin \theta_C \\ \sin \theta_C & \cos \theta_C \end{pmatrix} \begin{pmatrix} d' \\ s' \end{pmatrix}$$

Weak interaction acts on mixed states: d', \overline{S}'

Z boson couples only to the same weak flavor quarks

$$d' + d'$$
$$s' + \overline{s}'$$

$$\langle d', \overline{s'} | Z \rangle$$
 and $\langle s', \overline{d'} | Z \rangle$ are both ZERO

$$\langle d', \overline{d}' | Z \rangle = \langle s', \overline{s}' | Z \rangle \neq 0$$

$$\langle d, \overline{s} | Z \rangle$$

Calculate
$$\langle d, \overline{s} | Z \rangle$$
 $K^0 \left\{ \begin{array}{c} d & Z^0 \\ \overline{s} & \end{array} \right\}$

HW hint: Deep Inelastic Scattering (DIS)

14.7 a) 4-vector dot product (lab frame)

$$Q = \left[\left(\vec{k'} - \vec{k} \right), v \right]; \quad P = \left[0, m_p c^2 \right]$$

$$Q \cdot P = ?$$

$$\left(x\vec{P} + \vec{Q}\right)^2 = 0$$

c) from 14.6 W=mass of hadronic system

$$W^{2} = m_{p}^{2} + \frac{2m_{p}c^{2}v}{c^{4}} - \frac{Q^{2}}{c^{4}}$$

DIS

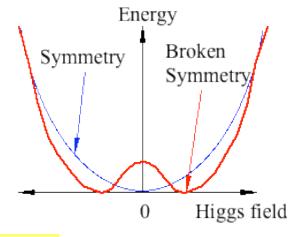
Looking for the answers

Standard model is continually being tested for evidence of something that doesn't fit, that might shed light on one or more of these questions:

- Why is the boson symmetry broken; W/Z boson masses large, but the photon mass zero?
- Why do quarks have such wildly different masses?
- Why is the # of quark and lepton and generations equal to 3?
- Why do quarks and neutrinos have the observed mixing angles θ ? Quarks have small mixing θ 's, but neutrinos have large mixing θ 's.
- Why are neutrinos masses so small compared to anything?
- Why is gravity such a puny force?
- Why doesn't the proton decay, or does it?
- Why does matter dominate over antimatter? Why CP violation?
- What is dark matter?

Dynamical symmetry breaking, the Higgs Mechanism

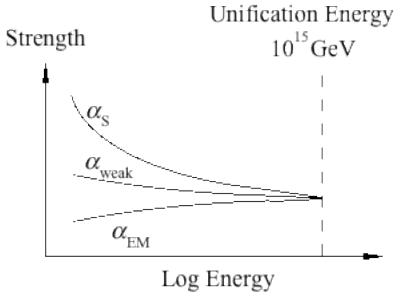
- Weinberg, Glashow & Salam
 - Basic theory has 4 massless bosons: triplet W_1, W_2, W_3 , and singlet B
 - Dynamical Symmetry Breaking via the Higgs Mechanism
 - W_1 , W_2 become W^{\pm} , but W_3 , and B mix with "Weinberg angle" = θ_W


$$\gamma = B^{0} \cos \theta_{W} + W_{3} \sin \theta_{W}$$
$$Z^{0} = -B^{0} \sin \theta_{W} + W_{3} \cos \theta_{W}$$

W and Z masses are related

$$m_W/m_Z = \cos\theta_W$$

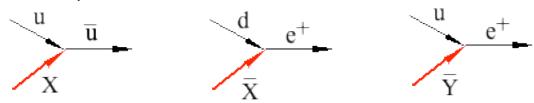
 θ_{W} measured in neutrino scattering


$$\sin^2 \theta_W = 0.233$$

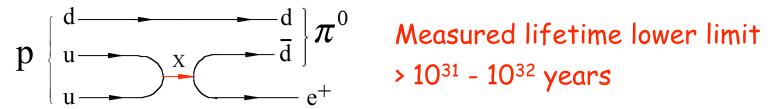
- Predict: $m_W/m_Z = 0.88$ $m_W/m_Z = 80.4/91.2 = 0.88$
- Simplest dynamical symmetry breaking would have 1 Higgs scalar (spin 0) particle $200 \, \text{GeV} > m_H > 115 \, \text{GeV}$ H^0

Grand Unified Theory (GUT)

- At very high energies everything would be highly symmetric
- All masses and couplings would be the same
- At low energies the symmetry is broken



- EW group is $SU(2)\times U(1)$: 4 gauge bosons (γ, W^+, W^-, Z)
- QCD group is SU(3)_{color}:8 gauge bosons(gluons)
- Simplest GUT is SU(5): ---> 24 gauge bosons (12 more bosons)

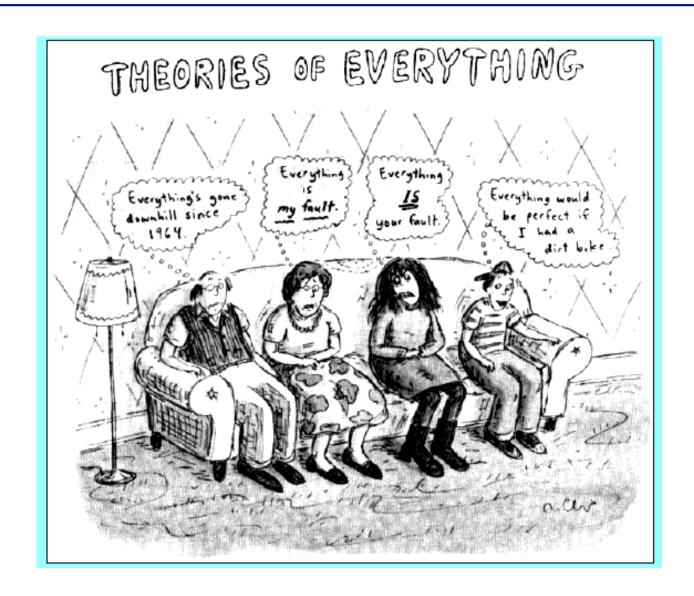

SU(5) has 12 more gauge particles

- Three with charge =-1/3, in three "colors" (Y_R, Y_G, Y_B)
- Three with charge =-4/3, in three "colors" (X_R, X_G, X_B)
- Six anti-particles of these
 - These gauge particles can change quarks into leptons or change quarks into antiquarks

Examples

• Can lead to proton decay (lifetime is $< 6 \times 10^{30}$ years) N.G.

Some success. But no proton decay, no 3 generations, has monopoles


Supersymmetry (SUSY)

- Every fermion has a supersymmetric boson partner and vise-versa
 - electron (e) ---> selectron (3)
 - quark $(q) \longrightarrow squark (\tilde{q})$
 - photon (γ) ---> photino (γ)
 - gluon (g) ---> gluino (g)
 - $W,Z \longrightarrow wino(\widetilde{W}), zino(\widetilde{Z})$
 - Higgs (H) ---> Higgsino (A)
 - Higgs* (H[±]) ---> Higgsino*(H[±])
- R-parity R=+1 (particles) R=-1 (supersymmetric particles)
- R parity product conserved
 - supersymmetric particles produced in pairs $(A + B \rightarrow A + B)$ $(1 \times 1 = -1 \times -1)$
 - Heavy supersymmetric particles decays ($\widetilde{A} \longrightarrow \widetilde{B} + A$) (-1 = -1 \times +1
 - Lightest supersymmetic particle cannot decay (might be stop quark)
 - Good Dark Matter candidate

Other qualities of Supersymmetry (SUSY)

- SUSY partners can cancel infinities that arise in calculations
- Unifies fermions an bosons
- Involves angular momentum inherently
 - rotational symmetries --- space translations
 - geometry of spacetime --- GRAVITY
- One major problem -- NOT a shred of evidence for it.
- Mass limit is greater than about 100 GeV
- Still looking at Fermilab Tevatron collider (CDF and D-Zero)
- Will look for it at LHC

Theories of everything

