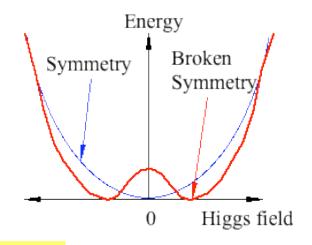
PHY492: Nuclear & Particle Physics

Lecture 22

Way Beyond the Standard Model Particle Detectors

Dynamical symmetry breaking, the Higgs Mechanism

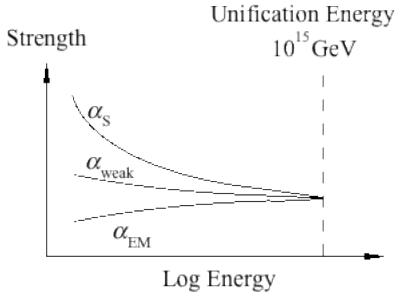
- Weinberg, Glashow & Salam (UNIFICATION OF EM and WEAK)
 - Basic theory has 4 massless bosons: triplet W_1, W_2, W_3 , and singlet B
 - Dynamical Symmetry Breaking via the Higgs Mechanism
 - W_1 , W_2 become W^{\pm} , but W_3 , and B mix with "Weinberg angle" = θ_W


$$\gamma = B^{0} \cos \theta_{W} + W_{3} \sin \theta_{W}$$
$$Z^{0} = -B^{0} \sin \theta_{W} + W_{3} \cos \theta_{W}$$

W and Z masses are related

$$m_W/m_Z = \cos\theta_W$$

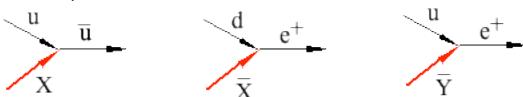
 θ_{W} measured in neutrino scattering


$$\sin^2 \theta_W = 0.233$$

- Predict: $m_W/m_Z = 0.88$ $m_W/m_Z = 80.4/91.2 = 0.88$
- Simplest dynamical symmetry breaking would have 1 Higgs scalar (spin 0) particle experimental $200 \text{ GeV} > m_H (> 115 \text{ GeV})$ limit

Grand Unified Theory (GUT)

- At very high energies everything would be highly symmetric
- All masses and couplings would be the same
- At low energies the symmetry is broken



- EW group is $SU(2)\times U(1)$: 4 gauge bosons (γ, W^+, W^-, Z)
- QCD group is SU(3)_{color}:8 gauge bosons(gluons)
- Simplest GUT is SU(5): ---> 24 gauge bosons (12 more bosons)
- What about Gravity!

SU(5) has 12 more gauge particles

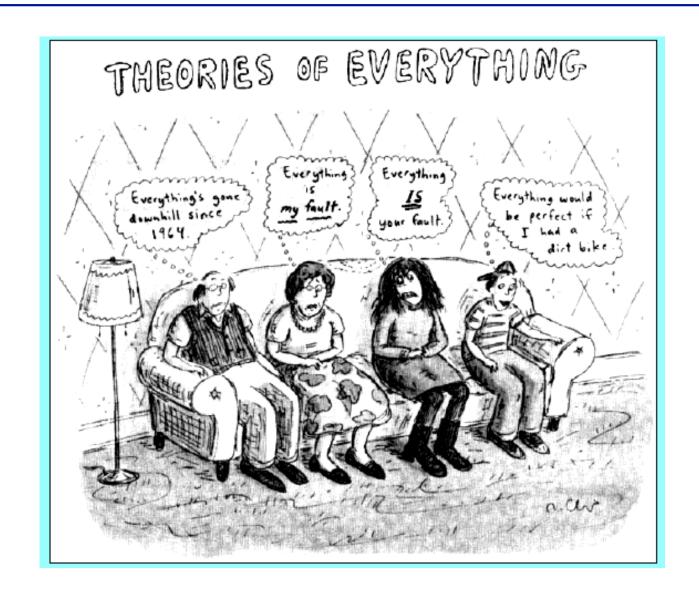
- Three with charge =-1/3, in three "colors" (Y_R, Y_G, Y_B)
- Three with charge =-4/3, in three "colors" (X_R, X_G, X_B)
- Six anti-particles of these
 - These gauge particles can change quarks into leptons or change quarks into antiquarks

Examples

• Can lead to proton decay (lifetime is $< 6 \times 10^{30}$ years) N.G.

$$p \left\{ \begin{array}{ll} d & \text{Measured lifetime lower limit} \\ u & \text{$>$} 10^{31} - 10^{32} \text{ years} \end{array} \right.$$

Some success. But no proton decay, no 3 generations, has monopoles


Supersymmetry (SUSY)

- Every fermion has a supersymmetric boson partner and vise-versa
 - electron (e) ---> selectron (~e)
 - quark $(q) \longrightarrow squark (\tilde{q})$
 - photon (γ) ---> photino (γ)
 - gluon (g) ---> gluino (g)
 - $W,Z \longrightarrow wino(\widetilde{W}), zino(\widetilde{Z})$
 - Higgs (H) ---> Higgsino (A)
 - Higgs* (H[±]) ---> Higgsino*(H[±])
- R-parity R=+1 (particles) R=-1 (supersymmetric particles)
- R parity product conserved
 - supersymmetric particles produced in pairs (A + B - > A + B) $(1 \times 1 = -1 \times -1)$
 - Heavy supersymmetric particles decays ($\widetilde{A} \longrightarrow \widetilde{B} + A$) (-1 = -1 \times +1
 - Lightest supersymmetic particle cannot decay (might be stop quark)
 - Good Dark Matter candidate

Other qualities of Supersymmetry (SUSY)

- SUSY partners can cancel infinities that arise in calculations
- Unifies fermions an bosons
- Involves angular momentum inherently
 - rotational symmetries --- space translations
 - geometry of spacetime --- GRAVITY
- One major problem -- NOT a shred of evidence for it.
- Mass limit is greater than about 100 GeV
- Still looking at Fermilab Tevatron collider (CDF and D-Zero)
- Will look for it at LHC

Theories of everything

The Planck scale

Fundamental constants

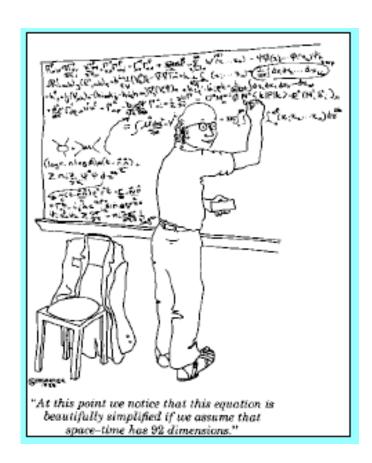
$$G = 6.7 \times 10^{-11} \text{ (m}^3 \text{ kg}^{-1} \text{ s}^{-2})$$

$$\hbar = 1.05 \times 10^{-34} \text{ (m}^2 \text{ kg s}^{-1})$$

$$c = 3 \times 10^8 \text{ (m s}^{-1})$$

Only one combination with G gives a length (The Planck Length)

$$L_P = \sqrt{G\hbar/c^3} = 1.6 \times 10^{-35} \text{m}$$


Combine again to get energy or mass, (The Planck Mass)

$$\hbar c/L_P = 1.2 \times 10^{19} \text{ GeV}$$

- GUT scale was 10¹⁵ GeV (Did not include gravity)
- Quantum Gravity
 - exchange spin 2, massless gravitons, gives an attractive force
 - scattering cross sections give infinities
 - gravitino (spin 3/2) helps to cancel these out
 - still lots of problems that are not solved

String Theory

- Fundamental particles appear point-like
- Point-like particles give infinities
- String theory postulates particles have a size and have string-like properties
 - Theory is formulated in 10 (or more) dimensions
 - Based on 1920's work by Kaluza & Klein
 - Particles can be closed or open strings
 - All extra dimensions except
 3 space and 1 time are curled up

Why is String Theory so popular?

QUESTION	s_{M}	SSM	String Theory	Other
what is matter	√			
what is light	√			
what interactions give our world	✓			
what stabilizes $m_{\rm pl}/m_W$		√	✓	?
gauge coupling unification		√		
explain EWSB, the Higgs mechanism		√		?
how is supersymmetry broken			✓	
is there a grand unified theory			✓	
proton decay		√	✓	
what is the origin of flavor physics			✓	
values of q.l [±] masses			V	
values of neutrino masses			V	?
physics of μ			✓	
R-parity conservation			V	
cold dark matter		√		✓
value of $tan \beta$		· /	✓	
weak CPV			V	
strong CPV			V	?
baryogenesis		√	-	
what is the inflaton		V	✓	
cosmological constant is small		V	V	
what is the dark energy		· /	<i>\</i>	
what are quarks and leptons			<i>\</i>	
what is electric charge			<i>\</i>	
how does space-time originate			V	
how does the universe originate			✓	
why does quantum theory give the rules			√	

Stay tuned

- The direction these theories will take is driven by Experiments
 - Fermilab/Japan Neutrino Oscillations (CP violation in leptons?)
 - Proton decay (decay modes involving K mesons)
 - Dark matter searches (nuclear recoils in cryo liquids)
 - Tevatron collider (Higgs, supersymmetry, CP violation, etc.)
 - Large Hadron Collider (ATLAS & CMS at 14 TeV)
 - International Linear Collider (the cleanest way to look)
- Next part of the course explains the operation of particle detectors and accelerators that are needed do these experiments.
- Materials Physics (Condensed Matter, Solid State, ...) plays
 a large role in understanding detectors and accelerators.

How to detect particles

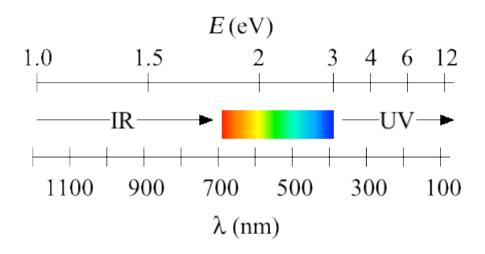
- Particles are detected by making them ionize atoms!
- Detecting charged particles
 - The electric field of a moving charged particle can ionize the atoms of the material in which it moves.
 - Ionization electrons are small and low mass, and can be collected by an electric field. Positive ions are big and heavy, and sluggish.
 - A charged particle accelerated by a magnetic or electric field radiates photons that can ionize atoms and release electrons
- Detecting neutral particles
 - Interact the neutral particle with matter and in the process release ionization electrons.
 - Sometimes you must completely destroy the neutral particle, but its energy has been used to create ionization.
- Must study Ionization to understand detectors

Ionization

- Ionization potential minimum energy to ionize (outer e shell)
 - Hydrogen 13.5 eV
 - Helium 25 eV
 - Lithium 5 eV
 - Neon 22 eV
 - Average ionization potential, includes inner shells
 - reaction dependent
 - for charged particles (e.g., electrons)
 - $\sim 16Z^{0.9}$ (eV) for Z>1
 - Low Z Nobel Gases (He, Ne, Ar, a little higher)

Photon induced ionization

- Photon (<20 eV) induced
 - Only valence electrons (a few)
 - Non-penetrating
 - Gases & surfaces
 - · high temperature
 - thermionic emission
 - · high electric fields
 - · ultraviolet light
 - photoelectric effect
 - ozone
 - photo-cathodes (Cs)
 - silicon photodiodes
- X-ray (<1 MeV) induced
 - All electrons (Z)
 - Penetrating
 - Gases & solid interiors


Useful conversion

$$\lambda$$
 – wavelength, ν – frequency
$$hc = 2\pi (\hbar c) = 2\pi (200 \text{ MeV} \cdot \text{fm})$$

$$= 1.2 \times 10^3 (\text{eV} \cdot \text{nm})$$

Photon energies

$$E = hv = \frac{hc}{\lambda} = \frac{1200(\text{eV} \cdot \text{nm})}{\lambda}$$

