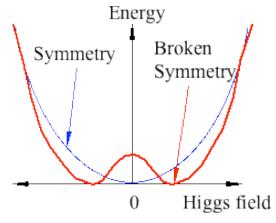
PHY492: Nuclear & Particle Physics

Lecture 23

HW Particle Detectors

13.1
$$x_{\min} = \left(\frac{m\omega^{2}}{\lambda}\right)^{\frac{1}{2}} \quad x_{\min}^{2} = \frac{m\omega^{2}}{\lambda}; \quad x_{\min}^{3} = \left(\frac{m\omega^{2}}{\lambda}\right)^{\frac{3}{2}}; \quad x_{\min}^{4} = \frac{m^{2}\omega^{4}}{\lambda^{2}}$$


$$V(x_{\min} + x, y) = -\frac{1}{2}m\omega^{2} \left[(x_{\min} + x)^{2} + y^{2} \right] + \frac{\lambda}{4} \left[(x_{\min} + x)^{2} + y^{2} \right]^{2}$$

$$= -\frac{1}{2}m\omega^{2} \left[x_{\min}^{2} + 2x_{\min}x + x^{2} + y^{2} \right] + \frac{\lambda}{4} \left[x_{\min}^{4} + 4x_{\min}^{3}x + 6x_{\min}^{2}x^{2} + 4x_{\min}x^{3} + x^{4} \right]$$

$$= \left[-\frac{1}{2}\frac{m^{2}\omega^{4}}{\lambda} - m\omega^{2} \left(\frac{m\omega^{2}}{\lambda} \right)^{\frac{1}{2}}x - \frac{1}{2}m\omega^{2}x^{2} + \dots \right]$$

$$+ \left[\frac{1}{4}\frac{m^{2}\omega^{4}}{\lambda} + m\omega^{2} \left(\frac{m\omega^{2}}{\lambda} \right)^{\frac{1}{2}}x + \frac{3}{2}m\omega^{2}x^{2} + \dots \right]$$

$$= -\frac{1}{4}\frac{m^{2}\omega^{4}}{\lambda} + m\omega^{2}x^{2} + \dots \quad \text{Q.E.D.}$$

14.1 a) Top lifetime

$$\delta E \delta t \sim \hbar; \quad \tau \sim \frac{\hbar}{\Gamma} = \frac{6.6 \times 10^{-22} \text{ MeV} \cdot \text{s}}{1.5 \times 10^3 \text{ MeV}} = 4.4 \times 0^{-25} \text{s}$$

c) Top quark decay $t \rightarrow W + b$

Energy Cons.:
$$E_W + E_b = m_t$$
; $E_W^2 = m_t^2 - 2m_t E_b + E_b^2$

Momentum Cons.: $E_W^2 - m_W^2 = p^2 = E_b^2 - m_b^2$; $E_W^2 = E_b^2 - m_b^2 + m_W^2$

$$E_b = (m_t^2 + m_b^2 - m_W^2 / 2m_t) = 69 \text{ GeV}; \quad p_b = (E_b^2 - m_b^2)^{\frac{1}{2}} = 69 \text{ GeV/c}$$

d) Parton-parton collision

$$E_{a} = x_{a} \frac{\sqrt{s}}{2}; \quad p_{a} = x_{a} \frac{\sqrt{s}}{2c}; \quad E_{b} = x_{b} \frac{\sqrt{s}}{2}; \quad p_{b} = -x_{b} \frac{\sqrt{s}}{2c}$$

$$p_{a} = x_{a} \frac{\sqrt{s}}{2c}; \quad p_{b} = -x_{b} \frac{\sqrt{s}}{2c}$$

$$\hat{s} = (E_a + E_b)^2 - (p_a c + p_b c)^2 = (x_a^2 + x_b^2) \frac{s}{4} + x_a x_b \frac{s}{2} - (x_a^2 + x_b^2) \frac{s}{4} + x_a x_b \frac{s}{2}$$

$$= x_a x_b s$$

top mass = 0.175 TeV $s_{TeV} = (2 \text{ TeV})^2 = 4 \text{ TeV}^2$

$$(.350)^2 = x_a x_b (4); \quad x_a x_b = 0.03; \quad x_a \sim x_b = \sqrt{.03} = 0.18$$

b) No time to interact

 $t_i = 1 \text{ fm/}c = 3.3 \times 10^{-24} \text{ s}$

 $\frac{\tau}{t_i} = \frac{4.4 \times 10^{-25} \text{s}}{3.3 \times 10^{-24} \text{s}} = 1.3 \times 10^{-1}$

$$s_{LHC} = (14 \text{ TeV})^2 = 200 \text{ TeV}^2$$

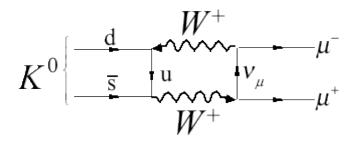
$$x_a \sim x_b = 0.025$$

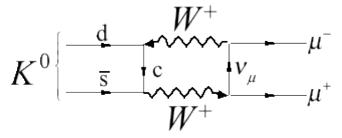
14.3 a) $\pi^- + p \rightarrow \Lambda^0 + K^0$ b) $\pi^+ + p \rightarrow \Sigma^+ + K^+$ p c) $\pi^+ + n \rightarrow \pi^0 + p$ n d) $p + p \rightarrow \Lambda^0 + K^+ + p$ e) $\overline{p} + p \rightarrow K^+ + K^$ u p

14.5 Quark mixing matrix

$$\begin{pmatrix} d \\ s \end{pmatrix} = \begin{pmatrix} \cos \theta_C & -\sin \theta_C \\ \sin \theta_C & \cos \theta_C \end{pmatrix} \begin{pmatrix} d' \\ s' \end{pmatrix}$$

$$K^{0} = (d, \overline{s})$$
 Quark content
 $d = d' \cos \theta_{C} - s' \sin \theta_{C}$
 $\overline{s} = \overline{d}' \sin \theta_{C} + \overline{s}' \cos \theta_{C}$


Weak interaction acts on mixed states

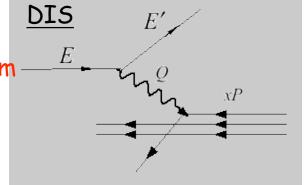

$$\langle d, \overline{s} | Z \rangle = \langle d', \overline{d'} | Z \rangle \cos \theta_C \sin \theta_C - \langle s', \overline{s'} | Z \rangle \cos \theta_C \sin \theta_C$$
$$+ \langle d', \overline{s'} | Z \rangle \cos^2 \theta_C + \langle s', \overline{d'} | Z \rangle \sin^2 \theta_C$$

Z couples only to the same weak flavor quarks

$$\langle d', \overline{s}' | Z \rangle$$
 and $\langle s', \overline{d}' | Z \rangle$ are both ZERO
 $\langle d', \overline{d}' | Z \rangle = \langle s', \overline{s}' | Z \rangle \neq 0$

But 4 quark mixing matrix gives this cancellation

Not seen: 1st order weak decay flavor changing neutral current


$$K^0\left[\begin{array}{c} \frac{\mathrm{d}}{\overline{s}} & Z^0 & \mu^- \\ \hline \overline{s} & \mu^+ \end{array}\right]$$

14.7 a) 4-vector dot product (lab frame)

$$Q = \left[\left(\vec{k'} - \vec{k} \right), v \right]; \quad P = \left[0, m_p c^2 \right]$$

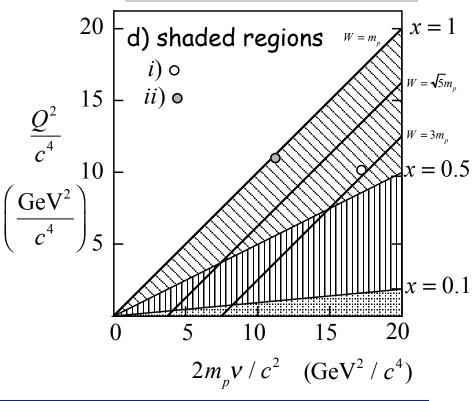
$$Q \cdot P = m_p c^2 v \text{ (invariant)}$$

infinite momentum frame

b) parton absorbs Q but remains massless

$$(x\vec{P} + \vec{Q})^2 = 0 = x^2 P^2 + 2x\vec{P} \cdot \vec{Q} + Q^2$$

$$x = \frac{Q^2}{2\vec{P} \cdot \vec{Q}} = \frac{Q^2}{2m_p vc^2} \text{ for } Q^2 >> x^2 P^2 = x^2 m_p^2 c^4$$


c) from 14.6
$$W^{2} = m_{p}^{2} + \frac{2m_{p}c^{2}v}{c^{4}} - \frac{Q^{2}}{c^{4}}$$
e) two points on plot (CoV²)

e) two points on plot

April 9, 2007

i)
$$v = E - E' = 9 \text{ GeV}$$
; $Q^2 = 4EE' \sin^2(\theta/2)$
 $2m_p v = 17 \text{ GeV}^2/c^2$; $Q^2 = 10 \text{ GeV}^2$
ii) $v = E - E' = 6 \text{ GeV}$; $Q^2 = 4EE' \sin^2(\theta/2)$

$$2m_p v = 11.3 \text{ GeV}^2 / c^2$$
; $Q^2 = 10.7 \text{ GeV}^2$

How to detect particles

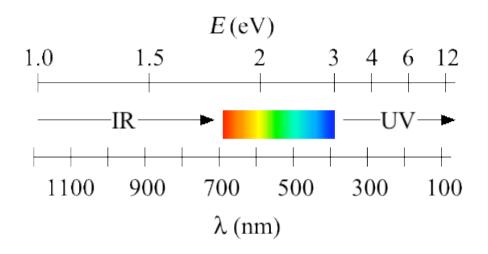
- Particles are detected by making them ionize atoms!
- Detecting charged particles
 - The electric field of a moving charged particle can ionize the atoms of the material in which it moves.
 - Ionization electrons are small and low mass, and can be collected by an electric field. Positive ions are big and heavy, and sluggish.
 - A charged particle accelerated by a magnetic or electric field radiates photons that can ionize atoms and release electrons
- Detecting neutral particles
 - Interact the neutral particle with matter and in the process release ionization electrons.
 - Sometimes you must completely destroy the neutral particle, but its energy has been used to create ionization.
- Must study Ionization to understand detectors

Ionization

- Ionization potential minimum energy to ionize (outer e shell)
 - Hydrogen 13.5 eV
 - Helium 25 eV
 - Lithium 5 eV
 - Neon 22 eV
 - Average ionization potential, includes inner shells
 - reaction dependent
 - for charged particles (e.g., electrons)
 - $\sim 16Z^{0.9}$ (eV) for Z>1
 - Low Z Nobel Gases (He, Ne, Ar, a little higher)

Photon induced ionization

- Photon (<20 eV) induced ionization
 - Only valence electrons (a few)
 - Non-penetrating
 - Gases & surfaces
 - high temperature
 - thermionic emission
 - high electric fields
 - · ultraviolet light
 - photoelectric effect
 - ozone
 - photo-cathodes (Cs)
 - silicon photodiodes
- X-ray (<1 MeV) induced
 - All electrons (Z)
 - Penetrating
 - Gases & solid interiors


Useful conversion

$$\lambda$$
 – wavelength, ν – frequency
$$hc = 2\pi (\hbar c) = 2\pi (200 \text{ MeV} \cdot \text{fm})$$

$$= 1.2 \times 10^3 (\text{eV} \cdot \text{nm})$$

Photon energies

$$E = hv = \frac{hc}{\lambda} = \frac{1200(\text{eV} \cdot \text{nm})}{\lambda}$$

Particle Physics Booklet

- Particle Data Group http://pdg.lbl.gov/
- Products
 - Order booklet http://pdg.lbl.gov/receive_our_products.html

http://pdg.lbl.gov/2005/reviews/contents_sports.html#expmethetc

Categories:

- Constants, Units, Atomic and Nuclear Properties
- Standard Model and Related Topics
- Particle Properties
- Hypothetical Particles
- Astrophysics and Cosmology
- Experimental Methods and Colliders
- Mathematical Tools
- Kinematics, Cross-Section Formulae, and Plots
- Authors, Introductory Text, History plots

Experimental Methods and Colliders

Accelerator physics of colliders (Rev.)

High-energy collider parameters (2004v)

Passage of particles through matter (Rev.)

Particle detectors (Rev.)

Radioactivity and radiation protection (Rev.)

Commonly used radioactive sources (2004v)

Detector Lectures for Students/Teachers

http://teachers.web.cern.ch/teachers/archiv/HST2002/

Charged particle induced ionization

Moving particle, mass M, ionizes atoms in medium

$$S(T) = -\frac{dT}{dx} = n_{ion}\overline{I}$$

T: kinetic energy of moving particle

 $S(T) = -\frac{dT}{dx} = n_{ion}\overline{I}$ n_{ion} : number of electron-ion pairs /unit path length

 \overline{I} : average energy/electron-ion pair

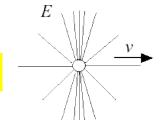
n_{ion} is particle velocity and charge dependent (Bethe and Bloch)

Stopping power

$$S(T) = \frac{4\pi Q^2 e^2 nZ}{m_e \beta^2 c^2} \left[\ln \left(\frac{2m_e c^2 \gamma^2 \beta^2}{\overline{I}} \right) - \beta^2 \right] \qquad \gamma = \frac{E}{Mc^2}; \quad \beta = \frac{pc}{E}; \quad \gamma \beta = \frac{p}{Mc}$$

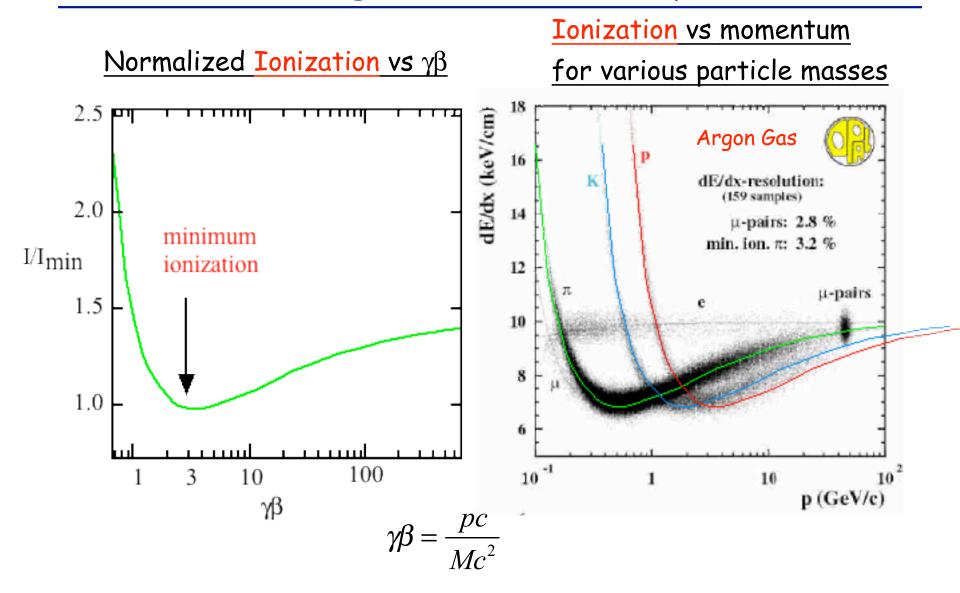
$$\gamma = \frac{E}{Mc^2}; \quad \beta = \frac{pc}{E}; \quad \gamma\beta = \frac{p}{Mc}$$

$$S(T) \propto \frac{1}{\beta^2 c^2} = \frac{1}{v^2}$$

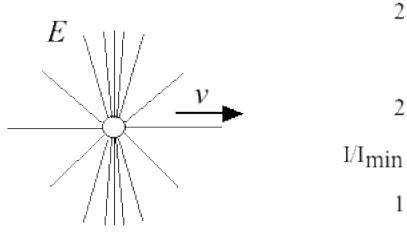

$$\beta$$
= v/c = < 0.8

heavy ionization

S minimizes,
$$\gamma\beta \sim 3$$

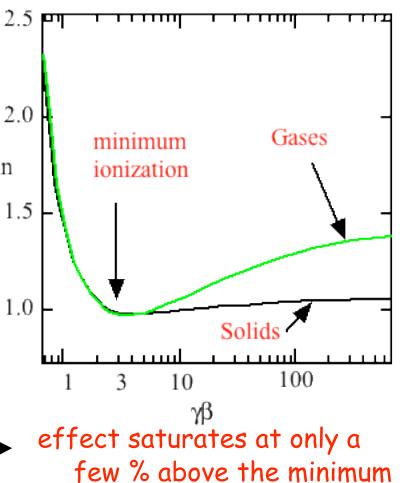

when $\beta \sim 0.95$ minimum ionization

$$S \propto \ln \gamma$$


ultra relativistic rise of ionization

Ionization in gases (relevant to all particles)

Saturation of ionization in solids


 Relativistic rise of ionization is due to electric field concentration perpendicular to direction of motion

Atoms along the line of motion see a stronger field as v -> c.

 Effect is largest in large Z gases, e.g., Xe

 Solids polarize and shield far electrons from field

Minimum ionization in thin solids

$$S(T) = -\frac{dT}{dx} \propto nZ = \rho A_0 \frac{Z}{A}$$

Z: atomic number of medium

n : number of atoms/unit volume

 $n = \frac{\rho A_0}{A}$; A: atomic number of medium

- Units for energy loss
 - $Z/A \sim 0.4$ at large A, energy loss proportional to density $S\sim \rho$,
 - Divided by the density -> value nearly independent of material.
- (dE/dx)_{min} tabularized for various materials in MeV/(g/cm²)
 - Polystyrene scintillator: 1.95

$$\rho_{\text{scintillator}} = 1.03 \text{ g/cm}^3$$

$$-\frac{dT}{dx}\bigg|_{\text{min}} = 1.95 \left(\frac{\text{MeV}}{\text{g/cm}^2}\right) \rho_{\text{Scintillator}} = 2.0 \text{ MeV/cm}$$

- Iron (steel): 1.45

$$\rho_{iron} = 7.87 \text{ g/cm}^3$$

$$-\frac{dT}{dx}\bigg|_{min} = 1.45 \left(\frac{\text{MeV}}{\text{g/cm}^2}\right) \rho_{iron} = 11.4 \text{ MeV/cm}$$

Relativistic muon loses ~2 MeV/cm in plastic, ~11.4 MeV/cm in Iron