
PHY492: Nuclear & Particle Physics

Lecture 24

Exam 2
Particle Detectors

b) Energy and momentum conservation equations:

$$\vec{p}_{\mu} = -\vec{p}_{v}$$
; note: $p_{\mu}^{2} = p_{v}^{2} = p^{2}$ and $E_{v} = pc$

$$m_{\pi}c^{2} = E_{\mu} + E_{v} = \sqrt{p^{2}c^{2} + m_{\mu}^{2}c^{4}} + pc$$

c) Solve for p_u

$$(m_{\pi}c^{2} - pc)^{2} = p^{2}c^{2} + m_{\mu}^{2}c^{4}$$

$$m_{\pi}^{2}c^{4} - 2m_{\pi}c^{2}pc + p^{2}c^{2} = p^{2}c^{2} + m_{\mu}^{2}c^{4}$$

$$2m_{\pi}c^{2}pc = m_{\pi}^{2}c^{4} - m_{\mu}^{2}c^{4}$$

$$p_{\mu} = p = \frac{1}{2} \left(1 - \frac{m_{\mu}^{2}}{m_{\pi}^{2}}\right) m_{\pi}c$$

- 2. Short Answer [4 pts each]
 - a) To describe the QCD color quantum numbers of quarks *and* gluons, how many colors are involved and give them relevant names.

There are 3 colors and 3 anti-colors, and gluons need both of them

Colors: red, blue, green; Anti-colors: red, blue, green or cyan, yellow, magneta

b) Consider Electric Charge, Quark Flavor, Baryon #, Isospin, and Lepton #. List those conserved by each of the three interactions other than gravity.

Interaction Conserved

Strong <u>electric charge, quark flavor, baryon#, Isospin, lepton#</u>

Weak <u>electric charge, baryon#, lepton#</u>

Electromagnetic electric charge, quark flavor, baryon#, lepton#

c) Using the quantum numbers of the strange quark describe why the reaction $K^-p \to \Xi^- + K^+$ can or cannot occur?

Since $K^- = (s, \overline{u})$; p = (uud); $\Xi^- = (ssd)$; $K^+ = (\overline{s}, u)$, reaction is allowed Annihilation of a $\overline{u}u$ pair, and creation of an $s\overline{s}$, generates the given final state.

- d) What are the symbols and names of all three quarks with charge +2/3.

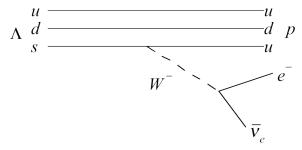
 (u) up; (c) charm; (t) top
- e) In the oscillations of the B^0 and \overline{B}^0 mesons what quantum characteristic is violated, and what interaction must be involved.

The <u>Bottom quark flavor</u> is not conserved: $B^0 = (b\overline{d})$, while $\overline{B}^0 = (\overline{b}d)$

- f) What matrix describes the mixing of neutrino flavor states as linear combinations of the 3 neutrino mass states, v_1, v_2, v_3 ? In what group (e.g., *diagonal* matrices) is the matrix? For what quarks does a similar matrix exist?
 - i) Neutrino mixing matrix U, such that $\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$
 - ii) The mixing matrix is <u>Unitary</u>. iii) The -1/3 quarks, d,s,b mix into d',s',b'
- g) Which Weak Bosons can be created in a collision of quarks?

 All weak bosons can be created in a collision of quarks (Unless this is mentioned)

 None, if you were thinking it had to be quark-antiquark or gluon-gluon collision.


h) The Cabibbo angle gives the mixing of which two quark mass states? d and s

$$\begin{pmatrix} d' \\ s' \end{pmatrix} = \begin{bmatrix} \cos \theta_c & \sin \theta_c \\ -\sin \theta_c & \cos \theta_c \end{bmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$$

i) What are the symbols and names of all three quarks with charge -1/3.

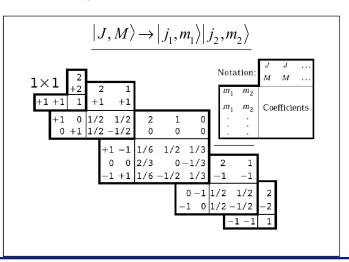
(d) down; (s) strange; (b) bottom

- j) The W^- boson can be produced in what QCD colors? Same question for W^+ ? The weak bosons, W^\pm , Z, are colorless particles. Their decay into a quark (color) and an anti-quark (anti-color) must proceed where the anti-color corresponds to the color.
- 3. [40 pts]Draw the Feynman diagram for the leptonic decay of the Λ baryon.

4. [20 pts]Identify the symmetry that is associated with each of these conservation laws: the conservation of energy, the conservation of linear momentum, and the conservation of angular momentum.

<u>conservation of energy</u> → <u>time reversal invariance</u> <u>conservation of momentum</u> → <u>translational invariance</u> <u>conservation of angular momentum</u> → <u>rotational invariance</u>

5. [40 pts]The Gell-Mann Nishijima relation is, $Q = I_3 + \frac{B+S+C}{2}$, where B is the


baryon number, S is the strangeness quantum number, and C is the charm quantum number, is true for all meson and baryon states.

Show that this relationship also works for the quarks with B = 1/3, the up and down quarks in an Isospin = 1/2 doublet, and the strange and charm quarks as Isospin = 0 singlets.

Quark	<u>I_3</u>	В	S	C	$I_3+(B+S+C)/2$	Q	Check
u	+1/2	1/3	0	0	3/6+1/6=+2/3	+2/3	OK
d	-1/2	1/3	0	0	-3/6+1/6 = -1/3	-1/3	OK
c	0	1/3	0	+1	0 + 2/3 = +2/3	+2/3	OK
S	0	1/3	-1	0	0 -1/3 = -1/3	-1/3	OK

6. [20 pts] Determine the Isospin of particle C that decays, $C \to A + B$, where A and B are Isospin 1 particles, and the decay probabilities for $C^0 \to A^\alpha + B^\beta$ are the same for all possible charges, α and β , of A and B. (show your work)

Only the (0,0) has equal probability (1/3) for each charge state. Particle C has Isospin I = 0.

Charged particle induced ionization

Moving particle, mass M, ionizes atoms in medium

$$S(T) = -\frac{dT}{dx} = n_{ion}\overline{I}$$

T: kinetic energy of moving particle

 $S(T) = -\frac{dT}{dx} = n_{ion}\overline{I}$ n_{ion} : number of electron-ion pairs /unit path length

 \overline{I} : average energy/electron-ion pair

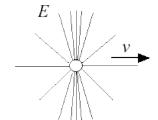
n_{ion} is particle velocity and charge dependent (Bethe and Bloch)

Stopping power

$$S(T) = \frac{4\pi Q^2 e^2 nZ}{m_e \beta^2 c^2} \left[\ln \left(\frac{2m_e c^2 \gamma^2 \beta^2}{\overline{I}} \right) - \beta^2 \right] \qquad \gamma = \frac{E}{Mc^2}; \quad \beta = \frac{pc}{E}; \quad \gamma \beta = \frac{p}{Mc}$$

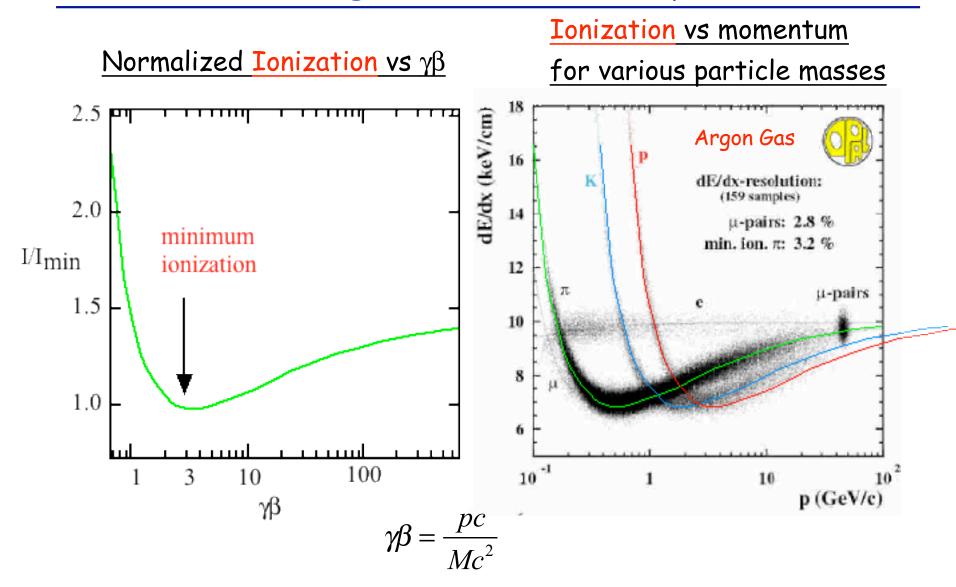
$$\gamma = \frac{E}{Mc^2}; \quad \beta = \frac{pc}{E}; \quad \gamma\beta = \frac{p}{Mc}$$

$$S(T) \propto \frac{1}{\beta^2 c^2} = \frac{1}{v^2}$$

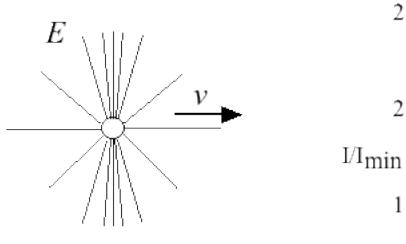

$$\beta$$
= v/c = < 0.8

heavy ionization

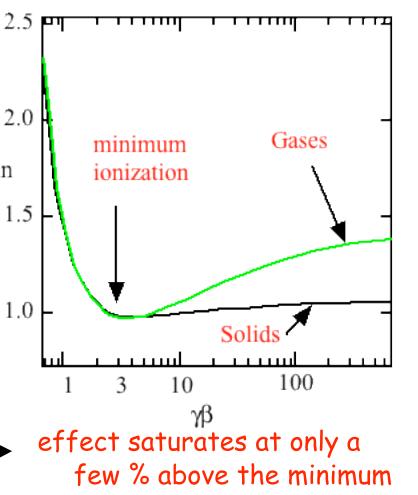
S minimizes,
$$\gamma\beta \sim 3$$


when $\beta \sim 0.95$ minimum ionization

$$S \propto \ln \gamma$$


ultra relativistic rise of ionization

Ionization in gases (relevant to all particles)



Saturation of ionization in solids

 Relativistic rise of ionization is due to electric field concentration perpendicular to direction of motion

- Atoms along the line of motion see a stronger field as v -> c.
- Effect is largest in large Z gases, e.g., Xe
- Solids polarize and shield far electrons from field

Minimum ionization in thin solids

$$S(T) = -\frac{dT}{dx} \propto nZ = \rho A_0 \frac{Z}{A}$$

Z: atomic number of medium

n : number of atoms/unit volume

 $n = \frac{\rho A_0}{A}$; A: atomic number of medium

- Units for energy loss
 - $Z/A \sim 0.4$ at large A, energy loss proportional to density $S\sim \rho$,
 - Divided by the density -> value nearly independent of material.
- (dE/dx)_{min} tabularized for various materials in MeV/(g/cm²)
 - Polystyrene scintillator: 1.95

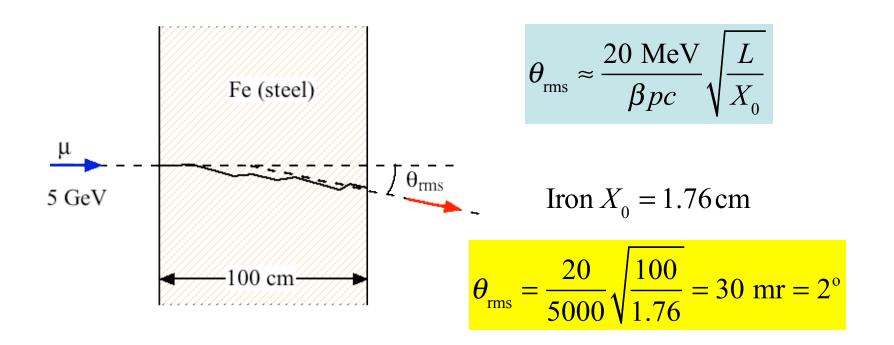
$$\rho_{\text{scintillator}} = 1.03 \text{ g/cm}^3$$

$$-\frac{dT}{dx}\bigg|_{\text{min}} = 1.95 \left(\frac{\text{MeV}}{\text{g/cm}^2}\right) \rho_{\text{Scintillator}} = 2.0 \text{ MeV/cm}$$

- Iron (steel): 1.45

$$\rho_{\text{iron}} = 7.87 \text{ g/cm}^3$$

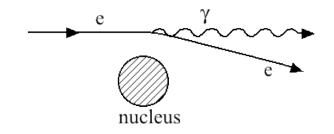
$$-\frac{dT}{dx}\bigg|_{\text{min}} = 1.45 \left(\frac{\text{MeV}}{\text{g/cm}^2}\right) \rho_{\text{iron}} = 11.4 \text{ MeV/cm}$$

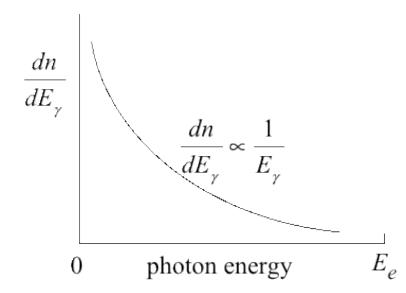

Relativistic muon loses ~2 MeV/cm in plastic, ~11.4 MeV/cm in Iron

High energy particles in matter

- · Particles can be deflected, degraded or absorbed
- Characteristic length is particle, energy, and material dependent Long lived particles (τ > 10⁻¹⁰ s)
- Muons (mass $m_{\mu} \sim 200 m_e$)
 - lose energy mostly by ionization -> energy determines range
 - rare energy loss by photon radiation in the EM field of nucleus
 - very rare EM interaction on nuclear charges, nuclear disintegration
 - deflection by multiple scatterings on atomic electrons
- Electrons and photons at high energy (T > 1 GeV)
 - Electron radiates a photon: X₀ is the "radiation length"
 - Photon converts to e^+e^- pair: $9X_0/7$ is the "pair length"
 - both only rarely collide with a nucleus
- Hadrons (proton, neutron, charged pi-meson, K-meson, ...)
 - nuclear interactions; absorption length, X_{abs} proportional to density ρ
 - additional hadrons often created

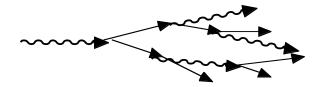
Muon multiple scattering


- 5 GeV muon (m=105.6 MeV/c²) through 1 m of steel looses about
 1.1 GeV by ionization. Some atomic electrons are kicked hard.
- Muon will be deflected (either direction) with a probability distribution that peaks at θ = 0 but spread by θ_{rms} .


Bremsstrahlung

- High energy electrons loose energy primarily by radiating photons
- The characteristic length, X_0 is material dependent
- Kinetic energy (on average) will drop exponentially.

$$\left. \frac{dT}{dx} \right|_{\text{Brem}} = -\frac{T}{X_0} \longrightarrow T = T_0 e^{-T/X_0}$$


- Photon energies are discrete with a $1/E_{\gamma}$ distribution
- Many low energy photons (even IR)
 and a few high energy photons

Photons in matter

- E < 1 MeV, photoelectric absorption and Compton scattering dominate the interactions of photons
- E = 1 10 MeV, Compton scattering dominates but pair production is rising
- E > 10 MeV, pair production dominates the interactions

Cascading interactions

- 1. 1 GeV photon enters a block of lead $(X_0 = 0.56 \text{ cm})$
- 2. After 5 mm the photon produces a e+e- pair (0.4 and 0.6 GeV)
- 3. After 3 mm the e+ "brems" a 100 MeV photon. After 6 mm the e- "brems" a 300 MeV photon (e+ and e- are both 300 MeV).
- 4. After a few more mm each, the 100 MeV and 300 MeV photons pair produce, the 300 MeV e+ and e- both brems
- 5. Repeats until photons and electrons drop below 1 MeV.

Measuring a particle's momentum, energy, and mass

- Charged particle tracking
 - Gas: MWPC, Drift Chamber, GEM
 - Solid state: Silicon, diamond

MWPC = Multi-Wire Proportional Chamber

GEM = Gas Electron Multiplier

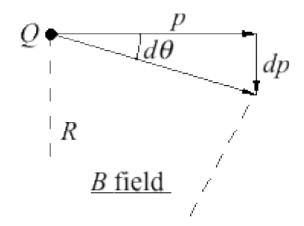
- Scintillators
 - scintillation and conversion -> electronic signals
 - Organic: Plastic, liquid hydrocarbon, fibers
 - Inorganic: Crystals, liquid noble gas
- Calorimeters
 - total absorption
 - sampling
- Particle identification (ID)
 - time of flight
 - ionization
 - Cerenkov light
 - transition radiation

Momentum measurements

·Charge Q bending in a magnetic field

Relativistic Derivation
$$p = \gamma mv$$

$$dp = pd\theta = p \frac{vdt}{R}$$


$$\frac{dp}{dt} = p \frac{v}{R} = QvB$$

$$p = QBR$$

·Transform to more useful units

$$p \approx 0.3qBR$$

p in GeV/c, q in # of e'sB in Tesla, R in meters

Units transformation

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$
 $q = Q/(1.6 \times 10^{-19} \text{ C})$

$$p = QBR \left(1 \frac{\text{kg} \cdot \text{m} \cdot \text{s}^{-1}}{\text{C} \cdot \text{T} \cdot \text{m}} \right) \left[\left(\frac{c}{c} \right) \left(\frac{e}{e} \right) \right]$$
$$= qBR \left(\frac{3 \times 10^8 \text{ eV/}c}{\text{T} \cdot \text{m}} \right)$$
$$= 0.3qBR \left(\frac{\text{GeV/}c}{\text{T} \cdot \text{m}} \right)$$

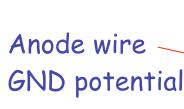
Using the sagitta to find R

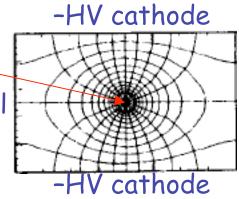
- · Bending of elementary charge in a magnetic field
 - large radius -> weak bending -> large momentum
 - typically see only a small portion of the circle
 - measurement of momentum is equivalent to a measurement of the sagitta.

easy to show

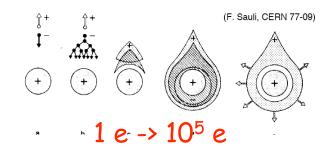
$$R \approx \frac{L^2}{8s}, \ s \ll R$$

$$p = 0.3qBR$$

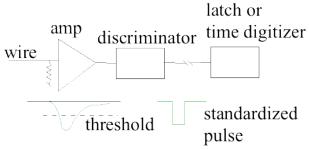

$$\frac{\delta p}{p^2} = \left(\frac{8}{0.3qBL^2}\right)\delta s$$


 δs is fixed by detectors make δs as small as possible

· Momentum errors minimized by big B, or even better by big L


Basics of wire chamber tracking

- Wire chamber features
 - Isolated gas volume ("chamber")
 - Anode wire, Au plated W, dia. <50μ
 - Cathodes at high voltage
- Gas properties (big subject)
 - Noble gas (Ar) no negative ions
 - UV quencher (hydrocarbon)
 - Cost
 - Cheap (flow & exhaust)
 - Expensive (recirculate & clean)
 - Electronics
 - 1 circuit for each wire
 - fast, low noise
 - multi-channel ICs



avalanche ~ 100µ from wire

one electronics "channel"

