Kepler's Laws-8 Sept

- The discovery of the laws of motion, the first science.
- De Revolutionibus Orbium

Coelestium, Copernicus, 1543

- Astronomia Nova, Kepler,
- Astron
- Philosophiae Naturalis Principia Mathematica, Newton, 1687
- How Kepler figured out the path of Mars from Tyco’s observations. Discovery of his three laws. Jamestown
 Kepler at 39, Sternwarte Kremsmün
http://members.nextra.at/stewar/ Copernicus 1473-1543 Columbus sails 1473 $\begin{array}{ll}\text { Tycho Brahe } & 1546-1601\end{array}$ Shakespeare 1564-1616 Johannes Kepler 1571-1630 Harvard College 1636 Isaac Newton 1642-1727
- Reading assignment has changed: Read the handout.
- Maximum number of point on Hwk 1 is 28.

Kepler Solves Mars Orbit

Kepler discovers Kepler’s First Law of Planetary Motion

- "... I was wondering why and how a sickle of just that by A. Koestler.
- Kepler describes the orbit: "The conclusion is simply that the planet's path is not a circle-it curves inward on both sides and outward again at pposite ends. Such a curve is called an oval. Th "Whit hot a circle, but an oval figure." -Ch. 4 .
- "What happened to me confirms the old proverb: a I could not think of any other means of imposing an oval path on the planets. When these ideas fel upon me, I had already celebrated my new riumph over Mars without being disturbed by the question whether the figures tally or not." -Ch.
 how a sickle of (0.00429) came into being. While this thought was driving me around, while I was considering again and again... that my apparent triumph over Mars has been in vain, I stumbled entirely by chance on the secant of the angle $5^{\circ} 18^{\prime}$, which is the measure ot greatest optical elongation.
 equals 1.00429 I felt as if I had been awakened from a sleep. " -Ch. 45 (a year's work later)

Kepler’s First Law of Planetary Motion 1605

- The path of a planet is an ellipse.
- Ellipse is figure for which D1+D2 does not change
- The sun is at one focus.
- Eccentricity = (dist between foci)/(major axis)
- Modern extension
- The path of an object controlled by the sun's gravity is an ellipse, parabola, or hyperbola.
- The sun is at one focus.

Kepler’s Second Law 1602

- The line joining the planet and the sun sweeps out equal areas in equal amounts of time
- Planet moves slowly when it is far from sun
- Planet moves rapidly when close to sun

Questions concerning Kepler’s Laws

Third Law 1618

- The size and periods of the planetary orbits are related by

$$
\mathrm{P}^{2}=\mathrm{a}^{3}
$$

- where P is the period in years and
- \quad a is the half of the major axis in astronomical units

1. A $10^{\text {th }}$ object (planet?) was found beyond the orbit of Pluto. \qquad has the shorter period.
A. Pluto
B. 10^{th} object
C. Not enough information to answer
http://web.cuug.ab.ca/-kmcclary/fastsolar.html

- A planet's path is an ellipse with the sun at one focus.
- A planet "sweeps" out the same area in an equal amount of time.
- The planets' periods P and semi-major axes a are related by $\mathrm{P}^{2}=\mathrm{a}^{3}$
- A planet, which has an almost circular orbit, and a comet, which has a highly elliptical orbit, have the same periods. Draw their orbits on a single picture.

1. Grading: sun's position
2. Grading: lengths of major axes.
3. Grading: lengths of minor axes.

Questions concerning Kepler’s Laws

- A planet's path is an ellipse with the sun at one focus.
- A planet "sweeps" out the same area in an equal amoun of time.
- The planets' periods P and semi-major axes a are related by
$\mathrm{P}^{2}=\mathrm{a}^{3}$
- A planet, which has an almos circular orbit, and a comet, which has a highly elliptica orbit, have the same periods. Draw their orbits on a single
picture.

1. Grading: sun's position
A. Centered for comet
B. Offset for comet
2. Grading: lengths of major axes.
A. Same for both
B. Different
3. Grading: lengths of minor
axes.
A. Same for both
B. Different
