Newton’s Laws of Motion & Gravity—15 Sept

- *De Revolutionibus Orbium Coelestium*, Copernicus, 1543
- *Astronomia Nova*, Kepler, 1609
- *Philosophiae Naturalis Principia Mathematica*, Newton, 1687
- Nature and Nature's laws lay hid in night: God said, Let Newton be! and all was light. —Newton's epitaph by Alexander Pope
- Newton: Same laws apply to a falling apple & moving planet.
- Description of motion
- Gravity $\propto \frac{1}{R^2}$ implies K’s 3rd Law

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Copernicus</td>
<td>1473–1543</td>
</tr>
<tr>
<td>Columbus</td>
<td>1492</td>
</tr>
<tr>
<td>Tycho Brahe</td>
<td>1546–1601</td>
</tr>
<tr>
<td>Shakespeare</td>
<td>1564–1616</td>
</tr>
<tr>
<td>Johannes Kepler</td>
<td>1571–1630</td>
</tr>
<tr>
<td>Jamestown</td>
<td>1607</td>
</tr>
<tr>
<td>King James Bible</td>
<td>1611</td>
</tr>
<tr>
<td>Harvard College</td>
<td>1636</td>
</tr>
<tr>
<td>Isaac Newton</td>
<td>1642–1727</td>
</tr>
<tr>
<td>George Washington</td>
<td>1732–1799</td>
</tr>
</tbody>
</table>

Upcoming events

- **Observing**, Tues, 16 Sept
 - Roof of parking ramp behind planetarium
 - 7:40 to see volcanic effect on sunset
 - 8:05 to see moonrise, Jupiter, Venus
- **Prof. Horace Smith on Northern Lights**
 - Thurs, 18 Sept, 7:30, at Planetarium
- **Bob Victor on What’s in the Sky**
 - Fri, 19 Sept, 8:00, at Everybody Reads, 2019 E Mich Ave, Lansing.

First test

- See practice test (link is on the syllabus http://www.pa.msu.edu/courses/AST207)
 - A few questions with verbal, numeric, or graphical answers.
 - No multiple-choice questions.
- Material covered today will be on the test.
- First test is low risk: it counts only 5% of course grade.
- Homework 3 must be handed by start of class on Fri, 19th.
 - Answers will be posted after class on Fri. See link on syllabus.
- Class on Fri is “Missouri Club”
 - You must ask a question, preferably a question of detail.
 - “How do you do question 3” is not detailed enough.
- You may bring one sheet of notes to use for Test 1.
“Natural” Motion for Newton & Aristotle

- Natural motion is motion that needs no explanation: the object naturally moves that way.
- Aristotle: For heavenly objects, natural motion is motion in a circle with the same speed. For base objects, natural motion is rest.
 - A book falls off the table and comes to rest on the floor. This needs no explanation because rest is the natural state.
- Newton: Natural motion is moving at the same speed in the same direction.
 - Newton’s First Law: In the absence of a force, an object moves at the same speed in the same direction.

1. A book falls off the table and lands on the floor. For Newton, what is natural, needing no further explanation?
 - a. The book is on the floor.
 - b. The book is halfway to the floor.
 - c. The book is just starting to fall.
 - d. I push the book off the table.

Newton’s Second Law

- Newton’s First Law: In the absence of a force, an object moves at the same speed in the same direction.
- Newton’s Second Law tells how to find the motion if there is a force.
 - \(\text{Force} = \text{mass} \times \text{acceleration} \)
 - Acceleration is change in velocity divided by amount of time
- Q3 The velocity changed in
 - a. Case A only
 - b. Case B only
 - c. Neither cases A nor B
 - d. Both cases A and B
- Q4 The acceleration is greatest for which case?

Newton discovers the law of gravity

- Newton was sitting under an apple tree and looking at the moon. An apple falls on his head. Newton realizes the moon and the apple fall for the same reason. He does a quick calculation and concludes that the force of gravity decreases as the square of the distance.
 - In a second, an apple falls 5 m.
 - The moon stays up in the sky. What does Newton mean by “the moon falls?”
 - The moon is 60 times farther from the center of the earth than the apple. It falls 1/60^2 as far as the apple.
Newton Implies Kepler’s 3rd Law

- Easier derivation: Assume orbit is a circle. Ignore numerical constants such as π or 2.
 - Newton’s Law of Gravity: Force between sun and planet
 Force = G \frac{\text{mass}_\text{sun} \times \text{mass}_\text{planet}}{\text{Distance}^2}; F = G \frac{M m}{R^2}
 - Newton’s 2nd Law
 Force = \text{mass}_\text{planet} \times \text{acceleration}; F = m a
 - \frac{G M m}{R^2} = m a; mass of planet cancels out.
 - Velocity is approximately \frac{R}{P}, where P is period. (It is exactly \frac{2\pi R}{P}.)
 - Acceleration, change in velocity/time, is approximately \frac{(R/P)/P}{R/P^2}
 - \frac{G M}{R^2} = a = \frac{R}{P^2}
 - \frac{P^2}{R^2} = \frac{4\pi^2}{G}
 - More accurate derivation
 \frac{P^2}{R^2} = 4 \frac{\pi^2}{G} \frac{R^3}{(M_{\text{sun}}+m_{\text{planet}})}
 4\pi^2/G = 2 \times 10^{30} \text{ kg yr}^2/\text{AU}^3 = 1 \text{ Msun yr}^2/\text{AU}^3

Kepler’s 3rd Law, according to Newton

\[P^2 = 4 \frac{\pi^2}{G} \frac{R^3}{(M_{\text{star}}+m_{\text{planet}})} \]
\[4\pi^2/G = 2 \times 10^{30} \text{ kg yr}^2/\text{AU}^3 = 1 \text{ Msun yr}^2/\text{AU}^3 \]

- If period is measured in years and semi-major axis is measured in AU,
 \[P^2 = \frac{M_{\text{sun}}R^3}{(M_{\text{star}}+m_{\text{planet}})} \]
 - If the star is the sun, and the mass of the planet is small, \[P^2 = R^3 \]
 - Kepler’s 3rd Law is the special case of a planet with negligible mass orbiting a star with the mass of the sun.

1. A planet orbits a star with the same orbit as the earth. Its period is 2 years. The mass of the star is __\text{ Msun}__.
 A. 2
 B. 4
 C. \frac{1}{2}
 D. 1/4