Discovery of White Dwarfs—1 Oct

- Homework 4 and 5 are due on Wed, Oct 8 . No late papers.
- Adams’ discovery
- Magnitude, apparent \& absolute
- Why are white dwarfs much smaller than stars like the sun?
- Normal gas \& degenerate gas

Sirius A \& B http://chandra.harvard.edu/photo/2000/0065/0065_optical.jpg

- Test 2 is on Fri, Oct 10
- Covers material through class on Fri, Oct 3.
- It will be mostly on material not covered on Test 1.
- Practice test (with answers) is on the web.
Last 15 min of class of Wed, Oct 8 will be Missouri club.
- Observing session next week is cancelled. go to public observing on 10-11 (link on syllabus) if you are interested.
- I will be in Chile to set up the Spartan Infrared Camera during the week of 13-17.
- Jack Baldwin will teach for me.

Luminosity and flux

- Luminosity = amount of energy per second (Watt) produced by the star $\mathrm{L}=\mathrm{R}^{2} \mathrm{~T}^{4}$
- \quad Flux $=$ energy per second received by a detector on earth $\left(\mathrm{Watt} / \mathrm{m}^{2}\right)$ - $\mathrm{F}=\mathrm{L} / \mathrm{D}^{2}$

1. As viewed from Earth, which is the faintest star?
A. Sun
B. Vega
C. Sirius
2. As viewed from a distance of 10 pc from each star, which is the faintest star?

Star	Apparent mag	Flux		Absolute mag	Luminossity		Distance [pc]
		[W/m²]	[v vega]		[W]	[$\left.\mathrm{L}_{\text {sun }}\right]$	
Sun	-26.7	1400	5.2×10^{10}	4.8	3.9×10^{26}	1	5×10^{-6}
Vega	0.0	2.7×10^{-8}	1	0.5	2.1×10^{28}	54	8
Sirius	-1.45	1.1×10^{-7}	3.9	1.4	9.0×10^{27}	23	2.7

Apparent \& Absolute Magnitude

- Apparent mag is a logarithmetic expression of flux

If the apparent mag changes by -2.5 , the flux is brighter by a factor of 10 .
If the apparent mag changes by +2.5 , the flux is fainter by a factor of 10 .

1. The apparent magnitude of a star is +2.5 . Its flux is
A. $2.7 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}$.
B. $2.7 \times 10^{-7} \mathrm{~W} / \mathrm{m}^{2}$.
C. $\quad 2.7 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}$.
D. $2.7 \times 10^{-9} \mathrm{~W} / \mathrm{m}^{2}$.
E. $\quad 2.7 \times 10^{-10} \mathrm{~W} / \mathrm{m}^{2}$
2. The apparent magnitude of a star is +5 . Its flux is

Star	Apparent mag	Flux		Absolute mag	Luminosity		Distance
		[W/m²]	[$\mathrm{f}_{\text {Vega }}$]		[W]	[$\mathrm{L}_{\text {sun }}$]	[pc]
Sun	-26.7	1400	5.2×10^{10}	4.8	3.9×10^{26}	1	5×10^{-6}
Vega	0.0	2.7×10^{-8}	1	0.5	2.1×10^{28}	54	8
Sirius	-1.45	1.1×10^{-7}	3.9	1.4	9.0×10^{27}	23	2.7

Apparent \& Absolute Magnitude

- Apparent mag is a logarithmetic expression of flux
- If the apparent mag changes by -2.5 , the flux is brighter by a factor of 10 .
- Fluxes and magnitudes of two stars A and B
$-\mathrm{f}_{\mathrm{B}} / \mathrm{f}_{\mathrm{A}}=10^{-(\mathrm{mB}-\mathrm{mA}) / 2.5}$
$-m_{B}-m_{A}=-2.5 \log \left(f_{B} / f_{A}\right)$

Star	Apparent	Flux			Absolute	Luminosity	
	mag						

Apparent \& Absolute Magnitude

- Apparent mag is a logarithmetic expression of flux

If the apparent mag changes by -2.5 , the flux is brighter by a factor of 10 .

- Absolute mag is a logarithmetic expression of luminosity

Abs mag of a star is its apparent mag if the star is moved to a distance of 10 pc .
Abs mag of a star is its apparent mag if the star is moved to a distance of 10 pc .
If the abs mag changes by -2.5 mag , the luminosity is brighter by a factor of 10 .

1. The absolute magnitude of a star is -2 . Its luminosity is
A. $2.1 \times 10^{26} \mathrm{~W}$.
B. $2.1 \times 10^{27} \mathrm{~W}$
C. $2.1 \times 10^{28} \mathrm{~W}$
D. $2.1 \times 10^{29} \mathrm{~W}$.
E. $2.1 \times 1030 \mathrm{~W}$.

Star	Apparent mag	Flux		Absolute mag	Luminosity		Distance
		[W/m²]	[$\mathrm{f}_{\text {Vega }}$]		[W]	[$\mathrm{L}_{\text {sun }}$]	[pc]
Sun	-26.7	1400	5.2×10^{10}	4.8	3.9×10^{26}	1	5×10^{-6}
Vega	0.0	2.7×10^{-8}	1	0.5	2.1×10^{28}	54	8
Sirius	-1.45	1.1×10^{-7}	3.9	1.4	9.0×10^{27}	23	2.7

Sirius A and Sirius B

- We are Walter Adams of the Mt. Wilson Observatory in 1914. We are studying the double star Sirius A and B. (Sirius A \& B orbit each other.)
- Sirius B is much fainter than Sirius A.

1. Sirius B may be faint for two reasons. It may be small or it may be
A. farther away
B. closer
C. cooler
D. hotter

2. Sirius B may be faint for two reasons. It may be small or it may be
A. farther away
B. closer
C. cooler
D. hotter

- Adams found that Sirius A and B have about the same color. Therefore Sirius B is smaller.

Sirius A and Sirius B

- Adams found that Sirius A and B have about the same color. Therefore Sirius B is smaller.
$-\mathrm{L}=\mathrm{R}^{2} \mathrm{~T}^{4}$
- How much smaller is Sirius B?
- Apparent mag of Sirius A is -1.5
- Apparent mag of Sirius B is 8.7

1. The mag of Sirius B is approximately steps of 2.5 approximately - steps of 2.5
A. 4
B. 5
C. 6
D. 10
2. The flux of Sirius B is approximately _ fainter.
A. a factor 10
B. a factor of 100
C. a factor of 1000
D. a factor of 10,000 .

Sirius A and Sirius B

Summarizing question

- Why was finding of Sirius B’s spectral class crucial to discovery of white dwarfs?
- Adams found that Sirius A and B have about the same color. Therefore Sirius B is smaller.
- $\mathrm{L}=\mathrm{R}^{2} \mathrm{~T}^{4}$
- How much smaller is Sirius B?
- Apparent mag of Sirius A is -1.5
- Apparent mag of Sirius B is 8.7

1. The mag of Sirius B is 4 steps of 2.5 fainter than that of Sirius B.
2. The flux of Sirius B is approximately _ fainter. A. a factor 10 B. a factor of 100
C. a factor of 1000
D. a factor of 10,000 .

- The radius of Sirius B is
$1 / 100$ that of Sirius A.
- Sirius B is about the size of the Earth.

