Discovery of White Dwarfs—1 Oct

- Adams' discovery
- Magnitude, apparent & absolute
- Why are white dwarfs much smaller than stars like the sun?
- Normal gas & degenerate gas

Sirius A & B http://chandra.harvard.edu/photo/2000/0065/0065_optical.jpg

- Homework 4 and 5 are due on Wed, Oct 8. No late papers.
- Test 2 is on Fri, Oct 10. - Covers material through class on Fri, Oct 3.
 - It will be mostly on material not covered on Test 1.
 - Practice test (with answers) is on the web.
 - Last 15min of class of Wed, Oct 8 will be Missouri club.
- Observing session next week is cancelled. go to public observing on 10-11 (link on syllabus) if you are interested.
- I will be in Chile to set up the Spartan Infrared Camera during the week of 13-17.

1

Luminosity and flux Luminosity = amount of energy per second (Watt) produced by the star $L=R^2T^4$ Flux = energy per second received by a detector on earth (Watt/m²) F=L/D² _ 1. As viewed from Earth, which is the faintest star? Use nur A. Sun B. Vega C. Sirius 2. As viewed from a distance of 10 pc from each star, which is the faintest star? Luminosity Apparent Flux Absolute Distance Star mag mag [W/m²] [f_{Vega}] [W] [L_{sun}] [pc] 3.9×10²⁶ 1 1400 5.2×10¹⁰ 4.8 5×10-6 Sun -26.7 Vega 0.0 2.1×10²⁸ 54 2.7×10⁻⁸ 1 0.5 8 Sirius -1.45 1.1×10⁻⁷ 3.9 1.4 9.0×10²⁷ 23 2.7

Apparent & Absolute Magnitude

- Apparent mag is a logarithmetic expression of flux
- If the apparent mag changes by -2.5, the flux is brighter by a factor of 10.
 - If the apparent mag <u>changes</u> by +2.5, the flux is fainter by a <u>factor</u> of 10.
- 1. The apparent magnitude of a star is +2.5. Its flux is
 - A. 2.7×10-6W/m².
 - B. $2.7 \times 10^{-7} W/m^2$.
 - C. 2.7×10⁻⁸W/m².
 - D. $2.7 \times 10^{-9} W/m^2$.
 - E. 2.7×10⁻¹⁰W/m².
- 2. The apparent magnitude of a star is +5. Its flux is

Star	Apparent	Flux		Absolute	Luminosity		Distance
	mag	[W/m ²]	[f _{Vega}]	mag	[W]	[L _{sun}]	[pc]
Sun	-26.7	1400	5.2×10 ¹⁰	4.8	3.9×10 ²⁶	1	5×10 ⁻⁶
Vega	0.0	2.7×10 ⁻⁸	1	0.5	2.1×10 ²⁸	54	8
Sirius	-1.45	1.1×10 ⁻⁷	3.9	1.4	9.0×10 ²⁷	23	2.7

Apparent & Absolute Magnitude Apparent mag is a logarithmetic expression of flux

- Apparent mag is a logarithmetic expression of flux
 If the apparent mag <u>changes</u> by -2.5, the flux is brighter by a <u>factor</u> of 10.
- Absolute mag is a logarithmetic expression of luminosity
 - Abs mag of a star is its apparent mag if the star is moved to a distance of 10 pc.
 - If the abs mag changes by -2.5 mag, the luminosity is brighter by a factor of 10.
- 1. The absolute magnitude of a star is -2. Its luminosity is
 - A. 2.1×10²⁶ W.
 - B. 2.1×10^{27} W.
 - C. 2.1×10^{28} W.
 - D. 2.1×10^{29} W.
 - E. 2.1×1030 W.

Star	Star Apparent		Flux		Luminosity		Distance
	mag	[W/m ²]	[f _{Vega}]	mag	[W]	[L _{sun}]	[pc]
Sun	-26.7	1400	5.2×10 ¹⁰	4.8	3.9×10 ²⁶	1	5×10 ⁻⁶
Vega	0.0	2.7×10 ⁻⁸	1	0.5	2.1×10 ²⁸	54	8
Sirius	-1.45	1.1×10 ⁻⁷	3.9	1.4	9.0×10 ²⁷	23	2.7

- 1. Sirius B may be faint for two reasons. It may be small or it may be A. farther away
 - B. closer
 - C. cooler
 - D. hotter

- 1. Sirius B may be faint for two reasons. It may be small or it may be A. farther away
 - B. closer
 - C. cooler
 - D. hotter
- Adams found that ٠ Sirius A and B have about the same color. Therefore Sirius B is smaller.

Sirius A and Sirius B

- Adams found that Sirius A and B have about the same color. Therefore Sirius B is smaller.
 - $L = R^2 T^4$
- How much smaller is Sirius B?
- Apparent mag of Sirius A is -1.5
- Apparent mag of Sirius B is 8.7
- fainter than that of Sirius A. A. 4 B. 5 C. 6 D. 10 2. The flux of Sirius B is approximately _____fainter. A. a factor 10

http://chandra.harvard.edu/photo/2000/0065/0065 optical.jp

- B. a factor of 100
- C. a factor of 1000
- D. a factor of 10,000.

1. The mag of Sirius B is

Sirius A and Sirius B

- Adams found that Sirius A and B have about the same color. Therefore Sirius B is smaller. $- L = R^2 T^4$
- How much smaller is Sirius B?
- Apparent mag of Sirius A is -1.5
- Apparent mag of Sirius B is 8.7
- The mag of Sirius B is 4 steps of 2.5 fainter than 1. that of Sirius B.
- 2. The flux of Sirius B is approximately _____fainter. A. a factor 10
 - B. a factor of 100
 - C. a factor of 1000 D. a factor of 10,000.
 - The radius of Sirius B is
 - 1/100 that of Sirius A. - Sirius B is about the size of the Earth.

http://chandra.harvard.edu/photo/2000/0065/0065_optical.j

Summarizing question

• Why was finding of Sirius B's spectral class crucial to discovery of white dwarfs?

