

19th Century "Energy Crisis"

- Luminosity of sun L=4×10²⁶Watt
- Mass m= 2×10^{30} kg
- How long will the sun last if the energy is produced by burning coal? $C+O_2 \rightarrow CO_2$
 - Life time = $m \times (E/m)/L$
 - E/m=9MJ/kg

- Speed of light c = 300,000 km/s

- Air in blast furnace moves at 0.2

km/s

- 1500 years
- Earth is much older than that.

Extract Energy from Gravity

- Luminosity of sun: L=4×10²⁶Watt
- Mass $m=2\times10^{30}$ kg
- How long will the sun last if the energy is produced by the sun contracting?
- If material falls from R_{sun} to 0.9R_{sun}
 - Energy = $\frac{1}{2}$ m v² = m g h = m (GM_{sun}/R_{sun}²)($0.1R_{sun})$
 - Life time = $m \times (E/m)/L$
 - 1.6 Million years
- · Kelvin's calculation includes material falling not just on surface. Got 100 Myr.
 - Kelvin thought earth could be this old, but later in 19th century, age of earth was shown to be much larger.

Lord Kelvin 1824-1907 www-history.mcs.st-andrews.ac.uk/ history/PictDisplay/Thomson.html /

- Sun contracts by 10%
 - $E=m c^2/1,000,000$. One part in a million of mass disappears and changes into energy.

1

Hans Bethe

1906-2005

- In a nuclear reaction, converting a significant fraction of the mass to energy is possible.
- Hans Bethe figured out the nuclear physics of how this happens.
- $4^{1}H \rightarrow {}^{4}He + neutrinos + 2e^{+} + energy$
 - 4 hydrogen nuclei fuse
 - One helium nucleus is produced
- 1. Which is heavier? A box of hydrogen and a box of helium, neutrinos, and positrons made from the hydrogen?
 - А. Н
 - B. Products: He, neutrinos, and positrons

