When the Sun Dies—8 Oct

- Sun will use up the hydrogen in the center in 5Byr
- Center of sun must shrink to get hotter to balance gravity
 - Sun will become a red giant. Surface expands.
- Sun will become a planetary nebula
- Sun will become a white dwarf

- · New schedule
 - http://www.pa.msu.edu/cou rses/AST207/
- Office hours 10/13-10/17
 - Jack Baldwin, 3270 BPS, MWF 12:00-13:00
- Observing (weather permitting)
 - Fri & Sat, 9:00-11:00pm
 - MSU Observatory, Forest & College Rd

Composition of the sun

• In center, hydrogen is half used up.

A Balancing Act

- All astronomical objects do a balancing act.
 - · Gravity pulls inward.
 - Something else pushes outward or gravity causes acceleration to change the motion
- 1. The Earth does a balancing act. What prevents the Earth from collapsing?
 - A. Gas pressure
 - B. The strength of the materials
 - C. Atoms change their directions of motion.

- What prevents the Earth's atmosphere from being dense at my feet but sparse at my head?
 - A. Gas pressure
 - B. The strength of the materials
 - C. Atoms change their directions of motion.

A Balancing Act: Gravity vs. Gas Pressure

- 1. What prevents the Earth's atmosphere from being dense at my feet but sparse at my head?
 - A. Gas pressure
 - B. The strength of the materials
 - C. Atoms change their directions of motion.
- · Force of gravity balances gas pressure.
 - Force of gravity GM²/R²
 - Force of gas PV=nkT
 - k is Boltzmann's constant. k= R/(number in a mole)
 - Details (m is mass of gas particle)

 $P = (nm)kT/m/V = M kT/(mR^3)$

 $F = area P = R^2 MkT/(mR^3) = M kT/(mR)$

- Balance: GMm/R=kT
- 1. We are watching the birth of the sun. The not-yet sun is a gas cloud slowly shrinking. It is getting
 - A. warmer
 - B. cooler

The sun's choice

- 1. How does the sun produce energy at the present time?
 - A. Fuse hydrogen to produce helium
 - B. Fuse He to produce carbon
 - C. Fuse carbon with helium
 - D. Fuse neon
 - E. Fuse oxygen

Reaction A 1H A 4He	
Reaction	Oro Min.
4 ¹H → ⁴He	10 MK
3 ⁴ He → ¹² C	200 MK
¹² C + ⁴ He → ¹⁶ O, Ne, Na, Mg	800 MK
Ne → O, Mg	1500MK
O → Mg, S	2000MK
Si →Fe peak	3000MK

The sun's choice

- 1. Why does fusion of helium require a higher temperature?
 - A. Helium is heavier
 - B. Helium has 2 protons
 - C. Helium has two neutrons

Reaction Nin.	
Reaction	Pro Min.
	Temp.
4 ¹H → ⁴He	10 MK
3 4He → 12C ×	200 MK
¹² C + ⁴ He → ¹⁶ O, Ne, Na,	800 MK
Mg	
Ne → O, Mg	1500MK
O → Mg, S	2000MK
Si →Fe peak	3000MK

The sun's choice

- 1. Why does fusion of helium require a higher temperature?
 - A. Helium is heavier
 - B. Helium has 2 protons
 - C. Helium has two neutrons
- With more charge, it takes higher speeds to bring two He nuclei close enough to fuse.
 - Carbon has 6 protons.

Reaction All All All All All All All All All Al	
Reaction	Prog Min.
	remp.
4 ¹H → ⁴He	10 MK
3 ⁴He → ¹2C •	200 MK
¹² C + ⁴ He → ¹⁶ O, Ne, Na,	800 MK
Mg	
Ne → O, Mg	1500MK
O → Mg, S	2000MK
Si →Fe peak	3000MK

The sun's choice

- Sun does a balancing act.
 - RT=k/(GMm)
- Sun must produce energy to replenish the energy radiated away.
- If H→He shuts off, source of energy to maintain pressure shuts off, and gravity wins.
- 1. What does the sun do to adjust for gravity's victory?

Peaction Triple alpha	
Reaction	Profemp.
.¹H → ⁴He	10 MK
⁴ He → ¹² C	200 MK
² C + ⁴ He → ¹⁶ O, Ne, Na, Mg	800 MK
Ne → O, Mg	1500MK
) → Mg, S	2000MK
i →Fe peak	3000MK

The sun's choice

- Sun does a balancing act.
 - RT=k/(GMm)
- Sun must produce energy to replenish the energy radiated away.
- If H→He shuts off, source of energy to maintain pressure shuts off, and gravity wins.
 - Sun shrinks.
 - · Core of sun gets hotter
 - H→He in the a shell surrounding inert core
 - · Balance restored.

Reaction Triple alpha	Oro Min.
¹H → ⁴He	10 MK
⁴ He → ¹² C	200 MK
² C + ⁴ He → ¹⁶ O, Ne, Na, Mg	800 MK
Ne → O, Mg	1500MK
) → Mg, S	2000MK
Si →Fe peak	3000MK
	t He core He burning shell t H

Sun as a subgiant 5 Byr from now • H is gone in the core • The never-ending battle between gravity and pressure. How does the sun adjust? • Without burning fuel to **←** Temperature keep temperature up, pressure (PV=nRT) would fall and gravity would win. Inert He core · Core shrinks, gets hotter H**→**He burning • H→He in the a shell shell surrounding inert core Inert H · Balance restored.

Sun as a giant A few 100Myr later • H is gone in the core • The never-ending battle between gravity and pressure. How does the sun adjust? • Without burning fuel to keep temperature up, **←** Temperature pressure (PV=nRT) would fall and gravity would win. · Core shrinks, gets hotter Inert He core • H→He in the a shell surrounding inert core H→He burning · Balance restored. shell Inert H • Inert He core expands

The sun's choice

- Sun does a balancing act.
 - RT=k/(GMm)
- Sun must produce energy to replenish the energy radiated away.
- Without burning fuel to keep temperature up, pressure (PV=nRT) would fall and gravity would win.
 - Core shrinks, gets hotter T=200MK

Sun Burns Helium Later • H is gone in the core & shell is exhausted • The never-ending battle between gravity and pressure. How does the sun adjust? • Without burning fuel to **←** Temperature keep temperature up, pressure (PV=nRT) would fall and gravity would win. He →C in core · Core shrinks, gets hotter T=200MK H→He burning • 3He→C in the core (triple alpha process) Inert H · Balance restored.

Other fusion reactions?

- Sun has one more trick after He is exhausted in core.
 - Burn He in a shell
- Sun is not massive enough to shrink further and get hotter
 - Core is supported by pressure of degenerate electrons.
 - Temperature does not rise to burn anything else.
- End of the road: planetary nebula & white dwarf core

Reaction ProcMin.		
Reaction	OrocMin. Temp/	
4 ¹H → ⁴He	10 MK	
3 ⁴ He → ¹² C	200 MK	
¹² C + ⁴ He → ¹⁶ O, Ne, Na, Mg	800 MK	
Ne → O, Mg	1500MK	
O → Mg, S	2000MK	
Si →Fe peak	3000MK	