When the Sun Dies—8 Oct

• Sun will use up the hydrogen in the center in 5Byr
• Center of sun must shrink to get hotter to balance gravity
 – Sun will become a red giant. Surface expands.
• Sun will become a planetary nebula
• Sun will become a white dwarf

Composition of the sun

• In center, hydrogen is half used up.

A Balancing Act

• All astronomical objects do a balancing act.
 • Gravity pulls inward.
 • Something else pushes outward or gravity causes acceleration to change the motion.

1. The Earth does a balancing act. What prevents the Earth from collapsing?
 A. Gas pressure
 B. The strength of the materials
 C. Atoms change their directions of motion.

1. What prevents the Earth’s atmosphere from being dense at my feet but sparse at my head?
 A. Gas pressure
 B. The strength of the materials
 C. Atoms change their directions of motion.

New schedule

– http://www.pa.msu.edu/courses/AST207/

• Office hours 10/13-10/17
 – Jack Baldwin, 3270 BPS, MWF 12:00-13:00

• Observing (weather permitting)
 – Fri & Sat, 9:00-11:00pm
 – MSU Observatory, Forest & College Rd
A Balancing Act: Gravity vs. Gas Pressure

1. What prevents the Earth’s atmosphere from being dense at my feet but sparse at my head?
 A. Gas pressure
 B. The strength of the materials
 C. Atoms change their directions of motion.
 • Force of gravity balances gas pressure.
 • Force of gravity \(GM^2/R^2 \)
 • Force of gas \(PV=nkT \)
 • \(k = \text{Boltzmann's constant.} \quad k = \frac{R}{(\text{number in a mole})} \)
 • Details (m is mass of gas particle)
 \[P = \frac{n(m)kT}{V} = \frac{MkT}{mR^3} \]
 • Balance: \(GMm/R = kT \)

1. We are watching the birth of the sun. The not-yet sun is a gas cloud slowly shrinking. It is getting
 A. warmer
 B. cooler

The sun’s choice

1. How does the sun produce energy at the present time?
 A. Fuse hydrogen to produce helium
 B. Fuse He to produce carbon
 C. Fuse carbon with helium
 D. Fuse neon
 E. Fuse oxygen

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Min. Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4, ^1\text{H} \rightarrow , ^4\text{He})</td>
<td>10 MK</td>
</tr>
<tr>
<td>(3, ^4\text{He} \rightarrow , ^4\text{He}, , ^4\text{He})</td>
<td>200 MK</td>
</tr>
<tr>
<td>(^{12}\text{C} + 4, ^1\text{H} \rightarrow , ^16\text{O}, , ^4\text{He}, , ^4\text{He}, , ^4\text{He})</td>
<td>800 MK</td>
</tr>
<tr>
<td>Ne (\rightarrow , ^{16}\text{O}, , ^4\text{He})</td>
<td>1500 MK</td>
</tr>
<tr>
<td>O (\rightarrow , ^{12}\text{C}, , ^4\text{He})</td>
<td>2000 MK</td>
</tr>
<tr>
<td>Si (\rightarrow , \text{Fe peak})</td>
<td>3000 MK</td>
</tr>
</tbody>
</table>

The sun’s choice

1. Why does fusion of helium require a higher temperature?
 A. Helium is heavier
 B. Helium has 2 protons
 C. Helium has two neutrons
 • With more charge, it takes higher speeds to bring two He nuclei close enough to fuse.
 • Carbon has 6 protons.
Sun as a main-sequence star

- $H \rightarrow He$ in the core
- $T=15\text{MK}$
- Fuel will last another 5 Byr.

The sun’s choice

- Sun does a balancing act.
- $RT=k/(GMm)$
- Sun must produce energy to replenish the energy radiated away.
- If $H \rightarrow He$ shuts off, source of energy to maintain pressure shuts off, and gravity wins.

1. What does the sun do to adjust for gravity’s victory?

Sun as a subgiant

- H is gone in the core
- The never-ending battle between gravity and pressure. How does the sun adjust?
 - Without burning fuel to keep temperature up, pressure ($PV=nRT$) would fall and gravity would win.
 - Core shrinks, gets hotter
 - $H \rightarrow He$ in a shell surrounding inert core
 - Balance restored.
Sun as a giant

- H is gone in the core
- The never-ending battle between gravity and pressure. How does the sun adjust?
 - Without burning fuel to keep temperature up, pressure \((PV=nRT)\) would fall and gravity would win.
 - Core shrinks, gets hotter
 - \(\text{H} \rightarrow \text{He}\) in the a shell surrounding inert core
 - Balance restored.
- Inert He core expands

The sun’s choice

- Sun does a balancing act.
- \(RT=k/(GMm)\)
- Sun must produce energy to replenish the energy radiated away.
- Without burning fuel to keep temperature up, pressure \((PV=nRT)\) would fall and gravity would win.
- Core shrinks, gets hotter \(T=200\text{MK}\)

Sun Burns Helium

- H is gone in the core & shell is exhausted
- The never-ending battle between gravity and pressure. How does the sun adjust?
 - Without burning fuel to keep temperature up, pressure \((PV=nRT)\) would fall and gravity would win.
 - Core shrinks, gets hotter \(T=200\text{MK}\)
 - \(3\text{He} \rightarrow \text{C}\) in the core (triple alpha process)
 - Balance restored.
Other fusion reactions?

- Sun has one more trick after He is exhausted in core.
 - Burn He in a shell
- Sun is not massive enough to shrink further and get hotter
 - Core is supported by pressure of degenerate electrons.
 - Temperature does not rise to burn anything else.
- End of the road: planetary nebula & white dwarf core

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Min. Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 1H \rightarrow 4He</td>
<td>10 MK</td>
</tr>
<tr>
<td>3 4He \rightarrow 13C</td>
<td>200 MK</td>
</tr>
<tr>
<td>12C + 4He \rightarrow 16O, Ne, Na, Mg</td>
<td>800 MK</td>
</tr>
<tr>
<td>Ne \rightarrow O, Mg</td>
<td>1500 MK</td>
</tr>
<tr>
<td>O \rightarrow Mg, S</td>
<td>2000 MK</td>
</tr>
<tr>
<td>Si \rightarrow Fe peak</td>
<td>3000 MK</td>
</tr>
</tbody>
</table>